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1. Introduction

A vast literature attempts to explain fluctuations of macroeconomic aggre-

gates at the business cycle frequency from dynamic artificial economies. These

economies usually rely on calibrated forward-looking rules relating choice variables

to expected future forcing variables. These rules capture the decisions formed by

economic agents, given for example preferences and technologies. Hence, the rules

reflect assumptions that are generally viewed as fundamental since they characterize

agents’ economic behavior. The artificial economies also typically rely on estimated

laws of motion depicting the dynamics of forcing variables. These laws of motion

are required to forecast future forcing variables involved in the rules. Hence, the

laws of motion reflect assumptions that are frequently perceived as auxiliary since

they define information sets. The artificial economies are then used to estimate

the parameters summarizing the salient features of cyclical fluctuations for selected

variables. The conventional ‘cyclical fluctuation’ parameters include standard devia-

tions, first-order autocorrelation coefficients, and dynamic cross-correlations. These

parameters characterize the volatility, persistence, and comovements of selected

variables (relative to a measure of the business cycle).

Arguably, the estimates may differ from the true values of the cyclical fluc-

tuation parameters, not because the rules are inadequate, but simply because the

laws of motion are misspecified. In such a case, this occurs not because the funda-

mental assumptions on agents’ economic behavior are incorrect, but rather because

the auxiliary assumptions defining information sets are invalid. In most studies,

the laws of motion correspond to vector autoregression (VAR) processes involving

only forcing variables. These standard laws of motion postulate that the relevant

information sets include only the history of forcing variables. However, it is possible
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that agents exploit additional information to improve their forecasts of future forc-

ing variables. The extra relevant information is embodied in exogenous variables,

hidden variables, which are either unknown or omitted by the econometrician. The

existence of hidden variables ensure that the agents’ relevant information set is

superior to the econometrician’s one.

Some empirical analyses try to account for superior information by using

augmented laws of motion (Campbell and Shiller 1987; Campbell and Deaton 1989;

Flavin 1993; Normandin 1999; Boileau and Normandin 2002, 2003). These laws of

motion correspond to VAR processes involving forcing variables and a single choice

variable. It can be shown that this specification is adequate only when the true

law of motion corresponds to a VAR process containing forcing variables and a

single hidden variable (Boileau and Normandin 2002). In this context, the choice

variable is a surrogate for the hidden variable. This occurs because, under the

assumed rules, all the relevant extra information is summarized by agents’ optimal

decisions. Consequently, the feedbacks from the lagged choice variable to current

forcing variables in the augmented law of motion reflect the existence of a hidden

variable.

This paper pursues three objectives. The first goal is to generalize the de-

velopment just described for the case of multiple hidden variables. To do so, we

consider an actual economy that is characterized by forward-looking rules for non-

predetermined variables and a true law of motion, which corresponds to a VAR

process involving many forcing and hidden variables. For this environment, we de-

rive the sufficient (rank) and necessary (order) conditions under which the actual

data generating process can be summarized by an augmented law of motion, which

corresponds to a VAR process involving exclusively forcing and nonpredetermined
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variables. Specifically, the order conditions reveal that there must be as many

nonpredetermined variables, or surrogates, as hidden variables to fully recover the

agents’ relevant information. In principle, the laws of motion with multiple non-

predetermined variables admit richer information sets than the case with a unique

nonpredetermined variable. Moreover, these augmented laws of motion offer the

considerable advantage to avoid selecting the hidden variables.

The second objective of our paper seeks to document the properties of the

estimates of cyclical fluctuation parameters when the law of motion is possibly mis-

specified. In particular, we pay attention to artificial economies where the standard

law of motion correctly (incorrectly) specifies the true law of motion due to the

absence (presence) of superior information. We also analyze cases where the aug-

mented law of motion represents an appropriate (inappropriate) specification. More

precisely, the augmented law of motion can be misspecified because there is no su-

perior information, or because it includes too many or too few nonpredetermined

variables to adequately capture the superior information.

For this purpose, we design a simulation procedure relying on four steps.

First, the true values of cyclical fluctuation parameters are obtained from a param-

etrized version of the actual economy, where the true law of motion may or may not

involve hidden variables. Second, the estimates of the parameters are calculated

from an artificial economy that correctly specifies the rules for nonpredetermined

variables, but that possibly misspecifies the law of motion for forcing variables.

Third, the confidence intervals for the estimates are derived from the bootstrap

percentile method, where the estimates are generated from a general Block Boot-

strap approach (Künsch 1989; Bühlmann 2002; Lahiri 2003). Fourth, a Monte Carlo

experiment is conducted to compute the coverage probability of the confidence in-
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tervals, the average length of the confidence intervals, and the root mean square

error of the estimates.

The simulation results indicate that the estimates of cyclical fluctuation pa-

rameters computed from the standard laws of motion yield efficient inference under

the absence of superior information, but are severely biased under the existence of

superior information. In contrast, the estimates obtained from the augmented laws

of motion lead to a sizeable loss of efficiency when there is no superior information,

but are never substantially biased whether or not there is superior information.

Moreover, the estimates obtained from the augmented laws of motion with a single

nonpredetermined variable are efficient and unbiased, whether unique or multiple

nonpredetermined variables are required to fully recover the superior information.

The latter econometric properties are attractive, given that, in practice, artificial

economies with augmented laws of motion are much more tractable when they in-

volve only a single nonpredetermined variable. These econometric properties also

suggest the relevance of previous empirical studies, based on augmented laws of

motion with a single choice variable.

Finally, the third goal of our paper is to assess the ability of the Bayesian

and Akaike information criteria (BIC and AIC) to detect the absence or presence

of superior information. To this end, these criteria are first define to select the

appropriate number of nonpredetermined variables to include in the law of mo-

tion. Then, our simulation procedure is used to compute the proportions of Monte

Carlo replications for which the information criteria correctly select the (standard

or augmented) law of motion that adquately specifies the true law of motion.

The results reveal that the BIC choses much more often the standard law

4



of motion when there is no superior information, while both the BIC and AIC

never wrongly select the standard law of motion when there is superior information.

Overall, these findings suggest that the BIC is very useful in empirical analysis to

determine whether the standard law of motion is a relevant specification. This is

crucial given that the standard law of motion yields efficient estimates of the cyclical

fluctuation parameters under the absence of superior information, whereas it leads

to biased estimates under the existence of superior information.

This paper is organized as follows. Section 2 presents the actual economy.

Section 3 describes the artificial economy. Section 4 elaborates the simulation pro-

cedure. Section 5 reports the simulation results. Section 6 concludes by presenting

several extensions.

2. The Actual Economy

Throughout our analysis, we consider an actual economy that is governed

by forward-looking rules and dynamic laws of motion. In this section, we describe

the actual economy, derive the underlying data generating process, and present the

associated cyclical fluctuation parameters.

2.1 The Rules

The actual economy is characterized by the relations:

mt = Φ
∞∑

j=1

βjEtft+j . (1)

The term Et represents the expectation operator conditional on the information
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available in period t. The (nm × 1) vector mt contains (endogenous) nonpredeter-

mined variables. The (nf × 1) vector ft incorporates (exogenous) forcing variables.

The matrix Φ includes coefficients, while the scalar |β| < 1 is a discount factor.

The relations (1) are forward-looking rules: they relate nonpredetermined

variables to expected future forcing variables. The rules reflect the decisions formed

by economic agents such as consumers, producers, and policy makers. Also, the

coefficients represent the structural parameters associated with economic notions

such as preferences and technologies. Hence, the rules rely on assumptions that are

generally viewed as fundamental since they characterize agents’ economic behavior.

The rules (1) are widely used in dynamic analyses, and in particular, in

macroeconomics, monetary economics, and financial economics. In macroeconom-

ics, for example, seminal applications of the Permanent Income Hypothesis relate

private saving to expected future changes of labor income (Campbell 1987) and

the current account (i.e. national saving net of investment) to expected future

changes of net output (i.e. output net of investment and government expenditures)

(Sheffrin and Woo 1990). In monetary economics, pioneer work on hyperinflation

establishes the logarithm of prices from the present value of expected future loga-

rithms of money supply (Cagan 1956), whereas the recent New Keynesian Phillips

curve expresses the inflation rate as the sum of discounted expected future firms’

real marginal costs (Gali and Gertler 1999). In financial economics, the expectation

theory of the term structure links the spread between long- and short-term interest

rates to expected future changes of short-term interest rate (Shiller 1979), while

the conventional stock pricing model relates the difference between the stock price

and a multiple of dividend to expected future changes of dividend (Campbell and

Shiller 1987).
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Other applications rely on rules that are more complex than (1). These cases

are analyzed in our extensions (section 6).

2.2 The True Law of Motion

In the actual economy, the forcing variables are governed by the stationary

first-order VAR process:

(
ft
ht

)
=

(
Π11 Π12

Π21 Π22

) (
ft−1

ht−1

)
+

(
uf,t

uh,t

)
,

or more compactly

wt = Πwt−1 + ut. (2)

The (nh × 1) vector ht includes additional (exogenous) variables. The vector wt

is observed by agents. The vector ut incorporates the innovations of exogenous

variables, with zero means and covariance matrices Ωff = E(uf,tu′
f,t) and Ω =

E(utu′
t). The matrix Π contains the feedback coefficients.

The VAR (2) corresponds to the true law of motion: it correctly specifies

the dynamics of exogenous variables. The law of motion depicts the stochastic

environment affecting the temporal evolution of exogenous variables. Also, the

feedback coefficients reveal the composition of the agents’ relevant information set

to form their expectations of future forcing variables. In particular, Π12 = 0 implies

that the agents’ relevant information set incorporates only the history of these

variables. In contrast, Π12 6= 0 implies that the agents’ information set includes

the history of all exogenous variables, because the additional variables contain extra
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information useful to track the temporal movements of forcing variables. Overall,

the law of motion reflects assumptions that are frequently perceived as auxiliary

since they define the agents’ information set.

The VAR processes are widely used in dynamic analyses, and in particular,

in data descriptions and linear projections. In data descriptions, the stochastic

properties are conveniently documented from impulse responses and from forecast

error variance decompositions (Sims 1980). In linear projections, the forecasting

power of variable groups is assessed from Granger-causality tests (Granger 1969;

Sims 1972) and the expected values of future variables are computed from Wiener-

Kolmogorov formula (Hansen and Sargent 1980).

Other applications rely on stationary p-order VAR processes. Our analysis

takes into account these cases by rewriting the VAR processes as first-order systems.

2.3 The Actual Data Generating Process

Agents use the true law of motion (2) to form their expectations of future

forcing variables involved in the rules (1). The agents’ solution is:

mt = ΦefβΠ
[
I(nf +nh) − βΠ

]−1

wt = Θwt = Υf ft + Υhht. (3)

The selection matrix ef is defined as ft = efwt and the (nd × nd) identity matrix

is denoted Ind
. Importantly, the solution (3) depends on all variables that contain

information useful to forecast future forcing variables. Therefore, (3) involves the

additional variables (Υh 6= 0) if and only if these variables Granger-cause forcing

variables (Π12 6= 0).
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As the actual economy, the true law of motion (2) and agents’ solution (3)

yield the data of ft, ht, and mt for fixed values of β, Φ, Π, and Ω. However, it will

prove useful to summarize this actual data generating process by a representation

involving exclusively forcing and nonpredetermined variables. To do so, it is as-

sumed for the moment that the numbers of nonpredetermined and hidden variables

are the same (nm = nh). In this environment, the representation corresponds to:

(
ft
mt

)
=

(
Γ11 Γ12

Γ21 Γ22

) (
ft−1

mt−1

)
+

(
vf,t

vm,t

)
,

or

xt = Γxt−1 + vt. (4)

When Π12 = 0, then xt = Ψft, vt = Ψuf,t, Γ = ΨΠ11ef , Λ = ΨΩffΨ′,

and Ψ = ( Inf
Υ′

f )′. Note that Γ12 = 0 implies that the block of equations for

forcing variables in (4) coincides with the true law of motion (2). Also, vt = Υuf,t

reveals that the innovations of nonpredetermined variables depend exclusively on

the innovations of forcing variables.

When Π12 6= 0, then xt = Υwt, vt = Υut, Γ = ΥΠΥ−1, Λ = ΥΩΥ′, and

Υ = ( e′f Θ′ )′. Note that Γ12 = Π12Υ−1
h 6= 0 reflects the effects of lagged addi-

tional variables on current forcing variables highlighted in the true law of motion

(2). Moreover, vt = Υut states that the innovations of nonpredetermined vari-

ables are functions of the innovations of all exogenous variables. This accords with

the notion that nonpredetermined variables fully summarize the agents’ relevant

information.
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Importantly, for the case Π12 6= 0, (4) is a well defined representation of the

actual data generating process under certain conditions.

Sufficient condition. The rank condition states that Υh is of full rank. To see this,

note that the matrix Γ involves:

Υ−1 =
(

Inf
0

−Υ−1
h Υf Υ−1

h

)
, (5)

which exists only if Υh is invertible.

Necessary conditions. The order conditions state that nf ≥ nh and nm = nh.

These are required for Υh to be invertible, given that under these conditions the

rank of Υh is ρ(Υh) = min(nf , nh) — where Υh = ΦΞ is a (nh × nh) ma-

trix, Φ is a (nh × nf ) matrix, and Ξ = β2Π11

[
(Inf

− βΠ11) − β2Π12(Inh
−

βΠ22)−1Π21

]−1

Π12(Inh
− βΠ22)−1 + βΠ12(Inh

− βΠ22)−1
[
Inh

+ β2Π21

[
(Inf

−

βΠ11) − β2Π12(Inh
− βΠ22)−1Π21

]−1

Π12(Inh
− βΠ22)−1

]
is a (nf × nh) matrix.

In addition, these conditions reveal that there must be as many nonpredetermined

variables as additional exogenous variables to recover adequately the agents’ rele-

vant information.

Few applications rely on the representation (4), with nf = 2 and nm = nh =

1 (Boileau and Normandin 2002, 2003). Our derivations formalize and generalize the

conditions under which the representation (4) is valid. Recall, however, that these

derivations hold when the numbers of nonpredetermined and additional exogenous

variables are identical. This condition is relaxed in our extensions (section 6).
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2.4 The Cyclical Fluctuation Parameters

The actual data generating process (4) yields the population moments:

vec(Σ0) =
[
I(nf +nm)2 − Γ⊗ Γ

]−1

vec(Λ), (6.1)

and

vec(Σk) =
[
I(nf +nm) ⊗ Γk

]
vec(Σ0). (6.2)

The term vec represents the vectorization operator (stacking by columns), ⊗ denotes

the Kronecker product, and Σk = E(xtx′
t−k).

In addition, the population moments (6) lead to the following parameters.

Volatility. The volatility of a selected nonpredetermined variable mt is measured by

its standard deviation σm. The variable mt is more (less) volatile than the measure

of business cycle yt when σm is larger (smaller) than σy. Note that yt can correspond

in some contexts to another nonpredetermined variable and in other environments

to a forcing variable.

Persistence. The persistences of mt and yt are measured by their first-order auto-

correlation coefficients ρm and ρy. The selected variable is more (less) persistent

than the business cycle when ρm is larger (smaller) than ρy.

Comovements. The comovements between mt and yt are measured by the dynamic

cross-correlations corr(mt, yt+k). The selected variable is procyclical (acyclical)

[countercyclical] when corr(mt, yt) > 0 (corr(mt, yt) = 0) [corr(mt, yt) < 0]. The

selected variable is a leading (coincident) [lagging] indicator of the business cycle
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when corr(mt, yt+k) reaches a maximum, in absolute value, for k > 0 (k = 0)

[k < 0].

These parameters are frequently invoked to characterize the salient features

of the actual fluctuations at the business cycle frequency. In particular, these cyclical

fluctuation parameters are extensively used in the real business cycle literature

(Kydland and Prescott 1982; King, Plosser, and Rebelo 1988).

3. The Artificial Economy

In what follows, we analyze an artificial economy that posits the correct

fundamental assumptions on agents’ economic behavior, but may impose invalid

auxiliary assumptions defining information sets. Specifically, the artificial economy

is characterized by the rules (1) and two laws of motion, that may differ from the

true law of motion (2). In this section, we specify the alternative laws of motion,

derive the artificial data generating process, and obtain the associated estimates of

cyclical fluctuation parameters.

3.1 The Alternative Laws of Motion

In the artificial economy, the forcing variables are assumed to be governed

by the stationary VAR process:

(
ft
mt

)
=

(
Π̃11 Π̃12

Π̃21 Π̃22

) (
ft−1

mt−1

)
+

(
ũf,t

ũm,t

)
,

or

xt = Π̃xt−1 + ũt. (7)

12



The vector xt contains the variables observed by the econometrician. In contrast,

the vector ht captures variables that are hidden to (unknown or omitted by) the

econometrician. The vector ũt includes error terms, with covariance matrices Ω̃ff =

E(ũf,tũ′
f,t) and Ω̃ = E(ũtũ′

t). The matrix Π̃ contains the feedback coefficients.

The VAR (7) embodies two laws of motion: the standard and augmented

ones. The standard law of motion imposes that Π̃12 = 0. In this case, the law

of motion involves only forcing variables. This means that the econometrician’s

information set used to construct agents’ expectations of future forcing variables

incorporates only the history of these variables.

When Π12 = 0, it is assumed that the standard law of motion coincides

with the true one, that is Π̃11 = Π11 and Ω̃ff = Ωff . This ensures that economic

agents and the econometrician use identical information, since forcing variables are

observed by everyone. When Π12 6= 0, the standard law of motion is misspecified.

This is because agents exploit the additional information contained in hidden vari-

ables to improve their forecasts of future forcing variables. In this context, agents

have superior (richer) information relative to the econometrician, given that hidden

variables are only observed by agents.

The augmented law of motion relaxes the restrictions Π̃12 = 0. Thus, it

augments the standard law of motion by including nonpredetermined variables.

This means that the econometrician constructs agents’ expectations of future forc-

ing variables from the information contained in the history of both forcing and

nonpredetermined variables.

When Π12 = 0, the augmented law of motion is misspecified. This occurs

because the econometrician’s information set includes redundant nonpredetermined
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variables. When Π12 6= 0, it is postulated that the augmented law of motion

coincides with the data generating process, that is Π̃ = Γ and Ω̃ = Λ. In this envi-

ronment, the feedbacks from lagged nonpredetermined variables to current forcing

variables reflect the notion that agents exploit the information contained in hidden

variables.

Importantly, these feedbacks do not indicate economic causalities, but rather

Granger-causalities. Hence, the nonpredetermined variables do not cause forcing

variables in an economic sense, but rather are surrogates for the hidden variables

that cause forcing variables. Interestingly, the Granger-causalities allow the verifi-

cation of the existence of superior information from (7), which exclusively contains

variables that are in the econometrician’s information set, instead of (2), which also

contains variables out of that information set. Finally, the surrogates permit the

econometrician to recover the agents’ extra information, and avoids the difficult

task of identifying and measuring all hidden variables.

In practice, standard laws of motion are almost always used in empirical

analyses. Few exceptions use augmented laws of motion, but with a single non-

predetermined variable (Campbell and Shiller 1987; Campbell and Deaton 1989;

Flavin 1993; Normandin 1999; Boileau and Normandin 2002, 2003).

3.2 The Artificial Data Generating Process

The econometrician uses the law of motion (7) to construct the agents’ ex-

pectations involved in the rules (1). This econometrician’s solution is:

m̃t = ΦefβΠ̃
[
I(nf +nh) − βΠ̃

]−1

xt = Θ̃xt = Υ̃f ft + Υ̃mmt, (8)
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The solution (8) depends on all variables included in the econometrician’s informa-

tion set. In particular, (8) involves nonpredetermined variables (Υ̃m 6= 0) if and

only if these variables Granger-cause forcing variables (Π̃12 6= 0).

Furthermore, the econometrician’s solution (8) and the agents’ solution (3)

are identical when the law of motion (7) correctly specifies the true law of motion

(2). For example, the artificial series m̃t exactly match the actual data mt, as long

as Π̃12 = 0 when agents do not possess superior information Π12 = 0. In this case,

it is easy to show that m̃t = mt since Υ̃f = Υf and Υ̃m = Υm = 0. Likewise,

m̃t = mt, as long as Π̃12 6= 0 when agents have superior information Π12 6= 0.

This occurs because Υ̃f = 0 and Υ̃m = Inm
, given that Θ̃ = ΘΥ−1 = em — where

em is a selection matrix defined as mt = emxt, Π̃ = Γ = ΥΠΥ−1, and efΥ = ef .

In contrast, the econometrician’s solution (8) and the agents’ solution (3)

are different when the law of motion (7) incorrectly specifies the true law of motion

(2). Importantly, the artificial series deviate from the actual data, not because the

rules are inadequate, but simply because the law of motion is misspecified. Put

differently, the artificial economy do not match the actual one, not because the

fundamental assumptions on agents’ economic behavior are incorrect, but rather

because the auxiliary assumptions defining information sets are invalid.

Finally, the artificial data generating process is summarized as:

(
ft
m̃t

)
=

(
Γ̃11 Γ̃12

Γ̃21 Γ̃22

) (
ft−1

m̃t−1

)
+

(
ṽf,t

ṽm,t

)
,

or
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x̃t = Γ̃x̃t−1 + ṽt. (9)

When Π̃12 = 0, then x̃t = Ψ̃ft, ṽt = Ψ̃ũf,t, Γ̃ = Ψ̃Π̃11ef , Λ̃ = Ψ̃Ω̃ffΨ̃′,

and Ψ̃ = ( Inf
Υ̃′

f )′. This artificial data generating process is identical to the

data generating process (4) under the absence of superior information (Π12 = 0),

since Π̃11 = Π11, Ω̃ff = Ωff , and Υ̃f = Υf . In contrast, it differs from (4) under

the existence of superior information (Π12 6= 0).

When Π̃12 6= 0, then x̃t = Υ̃xt, ṽt = Υ̃ũt, Γ̃ = Υ̃Π̃Υ̃−1, Λ̃ = Υ̃Ω̃Υ̃′, and

Υ̃ = ( e′f Θ̃′ )′. This formulation deviates from the data generating process (4)

when Π12 = 0. However, it is the same as (4) when Π12 6= 0, given that Π̃ = Γ,

Ω̃ = Λ, and Θ̃ = em.

3.3 The Cyclical Fluctuation Estimates

The artificial data generating process (9) produces:

vec(Σ̃0) =
[
I(nf +nm)2 − Γ̃⊗ Γ̃

]−1

vec(Λ̃), (10.1)

and

vec(Σ̃k) =
[
I(nf +nm) ⊗ Γ̃k

]
vec(Σ̃0), (10.2)

where Σ̃k = E(x̃tx̃′
t−k).

Expressions (10) yield estimates of the volatility and persistence of selected

nonpredetermined variables, as well as the comovements between these variables
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and the business cycle. In principle, these estimates are identical to the true values

of the cyclical fluctuation parameters obtained from (6) when the law of motion (7)

correctly specifies the true law of motion (2). In practice, however, the estimates

may slightly differ because they are computed from the estimated coefficients of (7),

while the true values are constructed from fixed (known) coefficients of (2). Finally,

the estimates may substantially deviate when the law of motion (7) misspecifies the

true law of motion (2).

4. Simulation Procedure

In this section, we design a simulation procedure to document the properties

of the inference of cyclical fluctuations under various specifications of the alternative

law of motion (7). For these evaluations, we rely on some parameters of interest,

such as σm, ρm, and corr(mt, ft+k) for k = −4, −2, 0, 2, and 4 — where mt and ft

correspond to the first elements of the vectors mt and ft. These cyclical fluctuation

parameters summarize salient features of the economy, such as the volatility and the

persistence of mt, as well as the comovements between mt and ft. In practice, esti-

mates of these parameters are often used to describe fluctuations of macroeconomic

aggregates at the business cycle frequency.

For the alternative law of motion (7), we pay attention to the cases where

the standard law of motion correctly (incorrectly) specifies the true law of motion

due to the absence (presence) of superior information. We also analyze artificial

economies where the augmented law of motion represents an appropriate (inappro-

priate) specification.

Specifically, the procedure involves the following steps.

17



Step 1. The true values of the cyclical fluctuation parameters are computed from

expressions (6) and given values for Γ and Λ of the actual data generating process

(4). These matrices are calculated from a specific parametrization of the coefficients

of the rules and the true law of motion. For the rules (1), we impose nm = nf and

set β = 0.99 to a standard value of the discount factor for a quarterly frequency,

as well as Φ = [φij ] with φii = 1 and φij = 0.5 (for i 6= j) to ensure that each

nonpredetermined variable is affected by all forcing variables. For the true law of

motion, we amend (2) as:




ft
ht

h+
t


 =




Π11 Π12 Π13

Π21 Π22 Π23

Π31 Π32 Π33







ft−1

ht−1

h+
t−1


 +




uf,t

uh,t

u+
h,t


 ,

or

wt = Πwt−1 + ut, (2′)

where the (nh+ × 1) vector h+
t contains ‘redundant’ hidden variables. For (2′), we

set nf = nh + nh+ , which will prove computationally convenient to analyze cases

where the number of nonpredetermined variables (nm = nf ) is greater or equal

to that of ‘relevant’ hidden variables (nh). Also, we fix Π11 =
(

Π22 Π23

Π32 Π33

)
,

Π21 = Π31 = 0, Π11 = [π11,ij] with π11,ii = 0.5 and π11,ij = 0.1 (for i 6= j),

Π12 = [π12,ij] with π12,ii = 0.5 and π12,ij = 0.1 (for i 6= j), Π13 = [π13,ij] with

π13,ii = 0.001 and π13,ij = 0 (for i 6= j), and Ω = E(utu′
t) = I2nf

. This ensures

that the hidden variables included in ht are ‘relevant’, since they contain useful

information to forecast future forcing variables (Π12 6= 0). In contrast, the hid-

den variables incorporated in h+
t are ‘redundant’, since they do not Granger-cause

forcing variables (Π13 ≈ 0). In this context, nh = 0 (nh > 0) reflects the absence
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(presence) of superior information. Finally, note that the parametrization yields

real positive eigenvalues between 0.4 and 0.9. This guarantees that the process (2′)

is stationary and that exogenous (forcing and hidden) variables exhibit smooth and

persistent dynamics.

Step 2. The estimates of the cyclical fluctuation parameters are calculated from

equations (10) and given values for Γ̃ and Λ̃ of the artificial data generating process

(9). These matrices are calculated from the parametrized version of the rules and

an estimated version of the alternative law of motion. For this law of motion, we

amend (7) as:

(
ft

m−
t

)
=

(
Π̃11 Π̃12

Π̃21 Π̃22

) (
ft−1

m−
t−1

)
+

(
ũf,t

ũ−
m,t

)
,

or

xt = Π̃xt−1 + ũt, (7′)

where the (nm− × 1) vector m−
t selects the first nm− nonpredetermined variables

included in mt. For (7′), we set nm ≥ n−
m ≥ 0, which will prove useful to enrich our

analysis to cases where the number of nonpredetermined variables involved in the

rules (nm) is greater or equal to that of nonpredetermined variables considered by

the econometrician (nm−). In this environment, nm− = 0 (nm− > 0) recovers the

standard (augmented) law of motion, while nm− = nh (nm− 6= nh) yields correctly

(incorrectly) specified laws of motion. Also, the law of motion (7′) is estimated

by applying Ordinary Least Squares (OLS) on simulated data. These data are

computed recursively from the actual data generating process (4), intial conditions

x0 = 0, and innovations vt = Υut where ut is drawn from a normal distribution

[N(0,Ω)] for t = 1, . . . , T . We set T = 250 to a traditional sample size in business

19



cycle analyses, which usually focus on the quarterly data covering the post World

War II period.

Step 3. The 95% confidence intervals for the estimates of the cyclical fluctuation

parameters are computed from the bootstrap percentile method. Specifically, we

use this method to construct a typical interval by selecting the middle 95% of the

500 ordered estimates of a cyclical fluctuation parameter, generated from a general

Block Bootstrap approach. This approach estimates the parameters from symmet-

ric functions of bootstrap samples containing vectors of consecutive observations

for forcing and nonpredetermined variables (Bühlmann 2002; Lahiri 2003). The

bootstrap samples are constructed by forming blocks of the consecutive vectorized

observations, selecting some blocks at random with replacement and joining them

together (Künsch 1989). In our application, we fix the size of the vectors to 2,

which is a natural selection given that the actual data generating process (4) cor-

responds to a first-order VAR process. (Using a size of 4 yields similar results.)

Note that these vectors are important because some cyclical fluctuation parameters

(such as the first-order autocorrelation and dynamic cross-correlations) are defined

through the joint distribution of 2 or more consecutive observations. Thus, a basic

block bootstrap (i.e. on individual observations) does not work because 2 consecu-

tive observations at the junction point of 2 blocks in the bootstrap sample are not

necessarily true consecutive observations. In addition, we set the size of blocks to

7, which accords with the optimal theoretical block length of order T 1/3 (Lahiri

2003). Note that these blocks are important to preserve the dependence structure

of the data, given that they are not independently distributed. Interestingly, this

is achieved without resorting to any parametric nor distributional assumptions.

Step 4. Some statistics used to assess the econometric properties of the estimates
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are computed from a Monte Carlo experiment with 1000 replications. These statis-

tics are the coverage probability CP of the confidence intervals, the average length

of the confidence intervals ALCI, and the root mean square error RMSE of the

estimates. CP corresponds to the fraction of the replications for which the true

values of the parameters fall in the confidence intervals. ALCI is calculated by

averaging over all replications the differences between the upper and lower bounds

of the confidence intervals. RMSE is computed by taking the square root of the

sum over all replications of the square deviations between the estimates and the

true values of the parameters, divided by 1000. For each replication, steps 2 and 3

are done.

Steps 1 to 4 are performed for all combinations nf ≥ nm− and nf ≥ nh

(to satisfy the necesary conditions derived in section 2), with nf = nm = 1, 3,

and 5, nm− = 0, 1, 3, and 5, as well as nh = 0, 1, 3, and 5. The combinations

nh = nm− (nh 6= nm−) capture the cases where the law of motion (7′) is well

specified (misspecified). In particular, nh = nm− = 0 (nh > nm− = 0) corresponds

to environments where the standard law of motion is well specified (misspecified)

due to the absence (presence) of superior information. Moreover, nh = nm− > 0

(nh 6= nm− > 0) represents artificial economies where the augmented law of motion

is well specified (misspecified). Interestingly, the augmented law of motion can be

misspecified because there is no superior information (nh = 0), or because there is

too many or too few nonpredetermined variables (nm− > nh or nm− < nh) included

in (7′) to adequately recover the superior information.

5. Simulation Results

In this section, we first present the results obtained by applying the sim-
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ulation procedure just explained. We then verify the robustness of our findings

to different sample sizes and various parametrizations of the true law of motion.

We finally assess whether some information criteria are successful in detecting the

absence or presence of superior information.

5.1 Basic Results

Table 1 reports the statistics CP , ALCI, and RMSE for actual economies

with no superior information (nh = 0). First, the artificial economies with standard

laws of motion (nm− = 0) always yield values of CP close to 95% for the 95%

confidence intervals of the various cyclical fluctuation estimates. As expected, this

occurs because the standard laws of motion correspond to adequate specifications

of the true laws of motion. Interestingly, the artificial economies with augmented

laws of motion involving single and multiple hidden variables (nm− = 1, 3, and 5)

also systematically produce CP -values approaching 95%. This arises although the

augmented laws of motion are misspecified, because they encompass the standard

laws of motion.

Second, the standard laws of motion (nm− = 0) always generate values of

ALCI that are smaller than those obtained from the various augmented laws of

motion (nm− > 0). Intuitively, this is because the augmented laws of motion include

redundant nonpredetermined variables, and as such capture noise that reduces the

accuracy of the inference of the cyclical fluctuation parameters. Empirically, the

discrepancies between the ALCI-values obtained from the augmented and standard

laws of motion are substantial: the deviations exceed 10% for almost half of the cases

and reach a maximum of 21%. It is precisely because the augmented laws of motion

tend to produce wider confidence intervals that they generate large CP -values.
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Third, the standard laws of motion (nm− = 0) most frequently produce

values of RMSE that are smaller than those derived from the augmented laws

of motion (nm− > 0). The differences between the RMSE-values derived from

the augmented and standard laws of motion are numerically nonnegligible: the

deviations exceed 10% for rouhgly one fifth of the cases and reach a maximum of

24%. These differences are mainly due to the large standard errors of the estimates

of the cyclical fluctuation parameters associated with the augmented laws of motion,

rather than to large mean biases of these estimates. (These results are not reported,

but are available upon request.) This accords with the fact that the augmented

laws of motion generally produce large coverage probabilities and wide confidence

intervals.

Table 2 presents the statistics for an environment where the superior informa-

tion is summarized by a single hidden variable (nh = 1). First, the results indicate

that the standard laws of motion (nm− = 0) frequently produce CP -values that

are substantially smaller than 95%: these values are smaller than 70% for almost

half of the cases and attain a minimum of 0.1%. This occurs because the standard

laws of motion represent inadequate specifications of the true laws of motion. In

contrast, the augmented laws of motion including only one nonpredetermined vari-

able (nm− = 1) always yield CP -values of about 95%. This arises because these

augmented laws of motion exactly incorporate the appropriate number of nonpre-

determined variable to adequately recover the superior information. Interestingly,

this finding also holds for the other augmented laws of motion (nm− > 1), even if

they include too many nonpredetermined variables.

Second, the augmented laws of motion with one nonpredetermined variable

(nm− = 1) generate ALCI-values that are sometimes smaller than those obtained
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from the standard laws of motion (nm− = 0), and almost always smaller than those

induced by the augmented laws of motion with multiple nonpredetermined variables

(nm− > 1). The discrepancies between the ALCI-values obtained from the well

specified augmented and misspecified standard laws of motion are important: the

deviations exceed 10% for all, but one, cases and reach a maximum of 6500%. In

contrast, the differences between the ALCI-values obtained from the well specified

and misspecified augmented laws of motion are mild: the deviations are less than

5% for almost all cases and reach a maximum of 8%.

Third, the augmented laws of motion with a single nonpredetermined vari-

ables (nm− = 1) produce RMSE-values that are almost always smaller than those

derived from the standard laws of motion (nm− = 0) and the augmented laws of mo-

tion with multiple nonpredetermined variables (nm− > 1). The differences between

the RMSE-values associated with the well specified augmented and misspecified

standard laws of motion are pronounced: the deviations exceed 50% for more than

half of the cases and reach a maximum of 362%. These differences are primarily

explained by the large mean biases of the estimates associated with the standard

laws of motion (nm− = 0). This is consistent with the observation that these laws

of motion usually generate small coverage probabilities. Conversely, the differences

between the RMSE-values computed from the well specified and misspecified aug-

mented laws of motion are modest: the deviations are less than 5% for four fifth of

the cases and attain a maximum of 9%. These differences are essentially due to the

large standard errors of the estimates obtained from the augmented laws of motion

with too many nonpredetermined variables (nm− > 1). This accords with the fact

that these laws of motion tend to generate wide confidence intervals.

Tables 3 and 4 report the statistics for the cases where the superior infor-
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mation is captured by multiple hidden variables (nh = 3 and nh = 5). First, the

standard laws of motion (nm− = 0) often generate CP -values that are much smaller

than 95%: these values are smaller than 50% for half of the cases and attain a min-

imum of 3%. In contrast, the augmented laws of motion involving at least as many

nonpretermined variables as hidden variables (nm− ≥ nh) yield CP -values that are

around 95%. So far, this corroborates the results presented above. In addition, the

augmented laws of motion containing less nonpredetermined variables than hidden

variables (nm− < nh) also produce CP -values of about 95%. This finding is sur-

prising, given that these laws of motion are mispecified since they include too few

nonpredetermined variables to completely recover the superior information.

Second, the well specified augmented laws of motion (nm− = nh) generate

ALCI-values that are sometimes smaller than those obtained from the standard

laws of motion (nm− = 0), and almost always smaller than those induced by the

augmented laws of motion with too many nonpredetermined variables (nm− > nh).

Also, these discrepancies are always more severe for the standard laws of motion.

This confirms the findings already presented. In addition, the well specified aug-

mented laws of motion (nm− = nh) yield ALCI-values that are systematically

larger than the augmented laws of motion with too few nonpredetermined variables

(nm− < nh). In fact, the various confidence intervals associated with the aug-

mented laws of motion with one nonpredetermined variable (nm− = 1) are always

the narrowest.

Third, the well specified augmented laws of motion (nm− = nh) produce

RMSE-values that are always substantially smaller than those derived from the

standard laws of motion (nm− = 0), and sometimes slightly smaller than those

computed from the augmented laws of motion with too many nonpredetermined
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variables (nm− > nh). Again, this is in line with our previous findings. Furthermore,

the well specified augmented laws of motion (nm− = nh) yield RMSE-values that

are similar to those calculated from the augmented laws of motion with too few

nonpredetermined variables (nm− < nh).

Overall, the results indicate that the estimates of the cyclical fluctuation pa-

rameters computed from the standard laws of motion yield efficient inference under

the absence of superior information, but are severely biased under the existence

of superior information. In the latter case, the estimates are often significantly

different from the true values of the cyclical fluctuation parameters not because

the fundamental assumptions on agents’ economic behavior reflected in the rules

are incorrect, but rather because the auxiliary assumptions defining information

sets from the standard laws of motion are invalid. In contrast, the estimates ob-

tained from the augmented laws of motion lead to a sizeable loss of efficiency when

there is no superior information, but are never substantially biased whether or not

there is superior information. Finally, the estimates obtained from the augmented

laws of motion with a single nonpredetermined variable are efficient and unbiased,

whether unique or multiple nonpredetermined variables are required to fully recover

the superior information. These last econometric properties are attractive, given

that, in practice, artificial economies with augmented laws of motion are much more

tractable when they involve only single nonpredetermined variables.

5.2 Robustness

The robustness of the results is verified in two ways. First, we consider

different sample sizes. Specifically, we set T = 100 to a typical small sample size

in international business cycle studies, which often rely on quarterly data covering
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the post Bretton Woods period. Also, we fix T = 1000 to a large size that tends

to an asymptotic sample. For the samples with T = 100 and T = 1000, the

bootstrap block sizes are set to 5 and 10, and the simulation procedure is redone

for nf ≥ nm− and nf ≥ nh with nf = nm = 1, 3, and 5, nm− = 0, 1, 3, and

5, as well as nh = 0, 1, 3, and 5. These exercises provide 6 (12) cases where

the standard law of motion is appropriately (inappropriately) specified. They also

yield 12 environements where the augmented law of motion is correctly specified,

12 cases where it is misspecified because there is no superior information, and

8 (8) artificial economies where there are too many (too few) nonpredetermined

variables incorporated in the law of motion (7′) to adequately recover the superior

information.

Second, we analyze alternative parametrizations of the true law of motion

(2′). In particular, we alter the baseline parametrization presented above to consider

the combinations π11,ii = 0.5 and π12,ii = −0.5, π11,ii = −0.5 and π12,ii = 0.5,

as well as π11,ii = −0.5 and π12,ii = −0.5. The parametrization with π11,ii =

0.5 implies real positive eigenvalues between 0.4 and 0.9, which guaranty that the

process (2′) is stationary and displays smooth dynamics. The parametrizations with

π11,ii = −0.5 yield real negative eigenvalues between -0.6 and -0.1, which ensure

that (2′) is stationary but exhibits oscillating dynamics. The parametrization with

π12,ii = 0.5 indicates that future forcing variables are positively linked to current

hidden variables, while those with π12,ii = −0.5 imply the opposite relation. For

each parametrization, the simulation procedure is redone for T = 250, nf ≥ nm−

and nf ≥ nh with nf = nm = 1, 3, and 5, nm− = 0, 1, 3, and 5, as well as nh = 0,

1, 3, and 5. These exercises provide 3 (15) cases where the standard law of motion

is appropriately (inappropriately) specified. They also yield 18 environments where
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the augmented law of motion is correctly specified, 18 cases where it is misspecified

because there is no superior information, and 12 (12) artificial economies where

there are too many (too few) nonpredetermined variables included in the law of

motion (7′) to adequately recover the superior information.

Importantly, the exercises involving exclusively alternative sample sizes or

parametrizations yield similar results to those reported previously. Likewise, the

exercises implying jointly alternative sample sizes and parametrizations produce

similar findings. (All results are available upon request.)

5.3 Information Criteria

The simulation results reported so far highlight that the estimates of cyclical

fluctuation parameters obtained from standard (augmented) laws of motion tend to

be biased (inefficient) under the existence (absence) of superior information. In this

context, it becomes crucial to detect the presence (if any) of superior information.

As explained above, this is done from the alternative law of motion (7′) by veri-

fying the Granger-causalities (if any) of the nonpredetermined variables on forcing

variables, where these variables are all in the econometrician’s information set.

For this purpose, we propose the modified Bayesian and Akaike information

criteria (BIC and AIC):

BIC = log |Ω̃ff | +
log T

T
(nf × nm−), (11)

AIC = log |Ω̃ff | +
2
T

(nf × nm−), (12)
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where Ω̃ff are evaluated at their OLS estimates and (nf × nm−) is the number

of estimated feedback coefficients in the matrix Π̃12. Expressions (11) and (12)

select the appropriate number of nonpredetermined variables (nm−) to include in

(7′). This contrasts with conventional applications, which use information criteria

to chose the adequate number of lags. Also, the formulations (11) and (12) preserve

the considerable advantage of being easy to implement, as in standard applications.

Table 5 presents statistics assessing the performance of the different informa-

tion criteria. These statistics are computed from our baseline simulation procedure.

They measure the proportions of Monte Carlo replications for which the BIC and

AIC correctly select the alternative (standard or augmented) law of motion (7′)

that adquately specifies the true law of motion (2′) (nh = nm−), and incorrectly

chose the standard law of motion (nh > nm− = 0).

The results reveal that the BIC strikingly overperforms the AIC in identifying

the appropriate specification of (7′). In particular, the BIC choses much more often

the standard law of motion when there is no superior information (nh = nm− =

0), especially when there are multiple forcing variables (nf > 1). Consequently,

the BIC tends to identify a number of nonpredetermined variables that is smaller

than that find from the AIC. This finding occurs because the BIC penalizes extra

parameters more heavily, for typical sample sizes T . Also, this result parallels the

well-documented notion establishing that the BIC selects a number of lags (which

converges asymptotically to the true lag length) that is smaller than that obtained

from the AIC (Hannan and Quinn 1979; Shibata 1980). In addition, our findings

show that both the BIC and AIC never wrongly select the standard law of motion

when there is superior information (nh > nm− = 0). (These results are robust

to the alternative sample sizes and parametrizations, and are available from the
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authors.)

Overall, these findings suggest that the BIC is useful in empirical analysis

to determine whether the standard law of motion is a relevant specification. This

is important given that this law of motion yields efficient estimates of the cyclical

fluctuation parameters under the absence of superior information, whereas it leads

to biased estimates under the existence of superior information. In contrast, the

information criteria are not so useful to determine whether the augmented law of

motion should contain a single or multiple nonpredetermined variables, given that

these specifications produce estimates of the cyclical fluctuation parameters which

exhibit similar properties. Moreover, recall that the augmented law of motion with

a single nonpredetermined variable offers, in practice, the important advantage of

being more tractable.

6. Extensions

This paper has presented and assessed a procedure to estimate conventional

parameters characterizing fluctuations at the business cycle frequency, when the

economic agents’ information set is superior to the econometrician’s one. First, we

showed that, under certain conditions, augmented laws of motion involving forcing

and nonpredetermined variables capture the agents’ superior information. Second,

we found from our simulation procedure that the estimates of cyclical fluctuation

parameters obtained from standard (augmented) laws of motion tend to be biased

(inefficient) under the existence (absence) of superior information. In addition, the

estimates obtained from the augmented laws of motion with a single nonpredeter-

mined variable are efficient and unbiased, whether unique or multiple nonpredeter-
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mined variables are required to fully recover the superior information. Third, we

concluded that a variant of the traditional Bayesian information criterion success-

fully detect the absence or presence of superior information.

Recall that our procedure relies on the rules (1). Admittedly, many macroe-

conomic environments lead to rules that are more complex than (1). For example,

the rules frequently involve not only nonpredetermined variables as in (1), but also

predetermined variables. Specifically, the rules often take the form:

n̂t = Φm1ft + Φm2

∞∑

j=1

βjEtft+j , (13.1)

p̂t+1 = Φp1ft + Φp2Etft+1 + Φp3

∞∑

j=1

βjEtft+j , (13.2)

where

n̂t ≡ nt −Θmpt, (14.1)

p̂t+1 ≡ pt+1 − Θppt. (14.2)

Here, the (nn×1) vector nt now denotes nonpredetermined variables and the (np×1)

vector pt+1 contains predetermined variables. Also, the vectors n̂t and p̂t+1 refer

to adjusted nonpredetermined and predetermined variables. The definitions (14)

allow the econometrician to measure the adjusted variables from actual data of nt

and pt+1 and calibrated values of Θm and Θp. The rules (13) are forward-looking,

as adjusted variables are exclusively related to current and expected future forcing

variables. Importantly, this implies that all adjusted variables mt = ( n̂′
t p̂′

t+1 )′
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represent appropriate surrogates for hidden variables. Hence, augmented laws of

motion similar to (7), involving both forcing and adjusted variables, adequately

recover the superior information. As a result, these augmented laws of motion

with the rules (13) and the definitions (14) can be used to estimate the parame-

ters characterizing the cyclical fluctuations of nonpredetermined and predetermined

variables (Boileau and Normandin 2003).

Also, many macroeconomic models yield rules that, in contrast to (1), are

nonlinear in forcing variables. Interestingly, a wide variety of these nonlinear envi-

ronments can be numerically solved by approximation methods that generate linear

forward-looking rules similar to (13) and (14) (King, Plosser, and Rebelo 2002). It

then become possible to estimate the cyclical fluctuation parameters as above.

Finally, recall that our procedure relies on necessary conditions stating that

the numbers of nonpredetermined and hidden variables are identical (nm = nh).

In principle, if there are less nonpredetermined variables than hidden variables

(nm < nh), then augmented laws of motion cannot recover the superior information.

In practice, however, our simulation results highlight that the inclusion of a single

nonpredetermined variable (nm = 1) is enough to yield adequate estimates of the

cyclical fluctuation parameters.

Conversely, if there are more nonpredetermined variables than hidden vari-

ables (nm > nh), then a collection of augmented laws of motion can be stacked

as:




x1,t

...
xκ,t


 =




Π̃1 . . . 0
...

. . .
...

0 . . . Π̃κ







x1,t−1

...
xκ,t−1


 +




ũ1,t

...
ũκ,t



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or more compactly

xt = Π̃xt−1 + ũt (15)

Here, xi,t = ( f ′t m′
i,t )′, where the

(
nm

κ × 1
)

vectors mi,t contain the ith block of

selected nonpredetermined variables (for i = 1, . . . , κ). In principle, when nm

κ = nh

then each augmented law of motion in (15) fully captures the superior information.

(If nm is not a multiple of nh, then some nonpredetermined variables must be

omitted.) In practice, however, our simulation results suggest that setting
(

nm

κ

)
= 1

yield appropriate estimates of the cyclical fluctuation parameters.
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Bühlman, P. (2002), “Bootstraps for Time Series,” Statistical Science 17, pp. 52–
72.

Cagan, P. (1956), “The Monetary Dynamics of Hyperinflation,” in M. Friedman
(ed.) Studies in the Quantity Theory of Money, Chicago: University of
Chicago Press.

Campbell, J.Y. (1987), “Does Saving Anticipate Declining Labor Income?” Econo-

metrica 55, pp. 1240–1273.

Campbell, J.Y. and A. Deaton (1989), “Why Is Consumption so Smooth?” Review

of Economic Studies 56, pp. 357–374.

Campbell, J.Y. and R.J. Shiller (1987), “Cointegration and Tests of Present Value
Models,” Journal of Political Economy 95, pp. 1062–1088.

Flavin, M. (1993), “The Excess Smoothness of Consumption: Identification and
Interpretation,” Review of Economic Studies 60, pp. 651–666.

Gali, J. and M. Gertler (1999), “Inflation Dynamics: A Structural Econometric
Analysis,” Journal of Monetary Economics 44, pp. 195–222.

Granger, C.W.J. (1969), “Investigating Causal Relations by Econometric Models
and Cross-Spectral Methods,” Econometrica 37, pp. 424–438.

Hannan, E.J. and B. Quinn (1979), “The Determination of the Order of an Autore-
gression,” Journal of the Royal Statistical Society, Series B 41, pp. 190–191.

Hansen, L.P. and T.J. Sargent (1980), “Formulating and Estimating Dynamic Lin-

34



ear Rational Expectations Models,” Journal of Economic Dynamics and Con-

trol 2, pp. 7–46.

King, R.G., C.I. Plosser, and S.T. Rebelo (1988), “Production, Growth, and Busi-
ness Cycles: I. The Basic Neoclassical Model,” Journal of Monetary Eco-

nomics 21, pp. 195–232.

King, R.G., C.I. Plosser, and S.T. Rebelo (2002), “Production, Growth, and Busi-
ness Cycles: Technical Appendix,” Computational Economics 20, pp. 87–
116.
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Table 1. Statistics: No Superior Information (nh = 0)

nm− = 0 nm− = 1 nm− = 3 nm− = 5

CP ALCI RMSE CP ALCI RMSE CP ALCI RMSE CP ALCI RMSE

σm 0.927 1.147 0.292 0.944 1.188 0.296
ρm 0.929 0.209 0.054 0.958 0.214 0.054

corr(mt, ft−4) 0.929 0.103 0.027 0.957 0.112 0.028
nf = 1 corr(mt, ft−2) 0.929 0.202 0.053 0.944 0.204 0.053

corr(mt, ft) — — — — — —
corr(mt, ft+2) 0.929 0.202 0.053 0.937 0.228 0.055
corr(mt, ft+4) 0.929 0.103 0.027 0.958 0.121 0.028

σm 0.908 4.091 1.042 0.929 4.296 1.051 0.939 4.332 1.056
ρm 0.921 0.176 0.048 0.959 0.179 0.045 0.957 0.178 0.045

corr(mt, ft−4) 0.933 0.202 0.053 0.955 0.212 0.054 0.964 0.215 0.054
nf = 3 corr(mt, ft−2) 0.937 0.259 0.069 0.952 0.262 0.069 0.952 0.262 0.068

corr(mt, ft) 0.953 0.351 0.089 0.946 0.366 0.093 0.930 0.369 0.095
corr(mt, ft+2) 0.933 0.287 0.076 0.932 0.304 0.078 0.926 0.310 0.079
corr(mt, ft+4) 0.919 0.207 0.055 0.946 0.227 0.056 0.937 0.233 0.057

σm 0.919 56.13 10.54 0.955 67.28 10.67 0.960 66.61 10.60 0.959 65.25 10.54
ρm 0.923 0.113 0.031 0.977 0.114 0.028 0.979 0.115 0.028 0.985 0.115 0.028

corr(mt, ft−4) 0.927 0.354 0.095 0.946 0.369 0.093 0.944 0.368 0.093 0.950 0.367 0.093
nf = 5 corr(mt, ft−2) 0.933 0.313 0.084 0.934 0.338 0.087 0.935 0.336 0.086 0.939 0.335 0.086

corr(mt, ft) 0.945 0.277 0.071 0.925 0.334 0.087 0.920 0.334 0.087 0.913 0.335 0.088
corr(mt, ft+2) 0.926 0.336 0.088 0.920 0.381 0.099 0.917 0.382 0.100 0.905 0.383 0.101
corr(mt, ft+4) 0.923 0.365 0.096 0.927 0.410 0.104 0.927 0.412 0.105 0.917 0.412 0.106

Notes: CP represents the coverage probability of the confidence intervals, ALCI is the average length of the confidence intervals, and RMSE is the root mean
square error of the estimates of cyclical fluctuation parameters. σm and ρm are the standard deviation and the first-order autocorrelation coefficient of mt,
while corr(mt, ft+k) are the dynamic cross-correlations between mt and ft (for k = −4, −2, 0, 2, and 4). mt and ft are the first elements of the vectors mt

and ft containing the nonpredetermined and forcing variables. nm=nf is the number of nonpredetermined and forcing variables in the rules (1) and in the true
law of motion (2′), nh is the number of ‘relevant’ hidden variables in the true law of motion (2′), and nm− is the number of nonpredetermined variables in the
alternative (standard or augmented) law of motion (7′). nm− = 0 (nm− > 0) corresponds to the standard (augmented) law of motion. nm− = nh (nm− 6= nh)
implies that the alternative law of motion (7′) is an adequate (inadequate) specification of the true law of motion (2′). — indicates omitted cases where by
construction |corr(mt, ft)| = 1 in the actual economy, so that the parameter value is on the boundary of the set of admissible values.
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Table 2. Statistics: Superior Information (nh = 1)

nm− = 0 nm− = 1 nm− = 3 nm− = 5

CP ALCI RMSE CP ALCI RMSE CP ALCI RMSE CP ALCI RMSE

σm 0.673 2.247 0.943 0.932 2.640 0.694
ρm 0.665 0.190 0.083 0.933 0.166 0.044

corr(mt, ft−4) 0.559 0.165 0.093 0.933 0.210 0.057
nf = 1 corr(mt, ft−2) 0.228 0.225 0.170 0.925 0.205 0.056

corr(mt, ft) 0.001 0.004 0.319 0.939 0.264 0.069
corr(mt, ft+2) 0.320 0.225 0.158 0.934 0.325 0.086
corr(mt, ft+4) 0.560 0.165 0.084 0.938 0.212 0.056

σm 0.859 6.732 1.804 0.931 7.312 1.705 0.935 7.503 1.726
ρm 0.815 0.164 0.058 0.944 0.140 0.037 0.941 0.150 0.040

corr(mt, ft−4) 0.892 0.264 0.075 0.935 0.292 0.075 0.948 0.306 0.077
nf = 3 corr(mt, ft−2) 0.483 0.266 0.153 0.938 0.233 0.060 0.944 0.233 0.059

corr(mt, ft) 0.501 0.242 0.158 0.956 0.247 0.060 0.948 0.257 0.063
corr(mt, ft+2) 0.827 0.279 0.109 0.940 0.326 0.082 0.944 0.331 0.083
corr(mt, ft+4) 0.707 0.251 0.112 0.936 0.267 0.070 0.934 0.277 0.071

σm 0.922 167.3 24.32 0.924 161.1 24.62 0.917 167.5 24.66 0.922 160.6 24.52
ρm 0.889 0.096 0.030 0.930 0.075 0.021 0.937 0.080 0.022 0.936 0.081 0.022

corr(mt, ft−4) 0.828 0.389 0.147 0.933 0.317 0.082 0.930 0.334 0.089 0.931 0.332 0.088
nf = 5 corr(mt, ft−2) 0.820 0.308 0.121 0.933 0.240 0.060 0.934 0.243 0.062 0.932 0.242 0.062

corr(mt, ft) 0.823 0.207 0.069 0.939 0.221 0.055 0.939 0.230 0.057 0.934 0.232 0.058
corr(mt, ft+2) 0.907 0.291 0.081 0.932 0.319 0.083 0.928 0.327 0.084 0.928 0.329 0.085
corr(mt, ft+4) 0.926 0.362 0.096 0.927 0.395 0.104 0.924 0.401 0.104 0.923 0.403 0.105

Notes: See Table 1.
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Table 3. Statistics: Superior Information (nh = 3)

nm− = 0 nm− = 1 nm− = 3 nm− = 5

CP ALCI RMSE CP ALCI RMSE CP ALCI RMSE CP ALCI RMSE

σm 0.962 38.51 7.872 0.913 21.55 5.044 0.915 21.68 5.046
ρm 0.903 0.120 0.038 0.919 0.113 0.030 0.940 0.112 0.030

corr(mt, ft−4) 0.900 0.331 0.094 0.924 0.274 0.074 0.933 0.274 0.073
nf = 3 corr(mt, ft−2) 0.790 0.269 0.101 0.928 0.194 0.052 0.942 0.197 0.052

corr(mt, ft) 0.230 0.202 0.183 0.934 0.286 0.074 0.933 0.289 0.074
corr(mt, ft+2) 0.215 0.295 0.231 0.939 0.393 0.103 0.943 0.397 0.103
corr(mt, ft+4) 0.209 0.344 0.248 0.940 0.404 0.106 0.939 0.409 0.106

σm 0.973 2278. 615.8 0.938 773.6 89.75 0.944 787.6 90.28 0.942 788.5 90.81
ρm 0.879 0.057 0.021 0.940 0.054 0.015 0.943 0.054 0.015 0.937 0.054 0.015

corr(mt, ft−4) 0.989 0.269 0.058 0.943 0.158 0.041 0.951 0.158 0.041 0.942 0.163 0.043
nf = 5 corr(mt, ft−2) 0.997 0.183 0.036 0.947 0.145 0.036 0.951 0.147 0.036 0.947 0.151 0.038

corr(mt, ft) 0.154 0.099 0.103 0.944 0.234 0.060 0.948 0.235 0.060 0.957 0.239 0.061
corr(mt, ft+2) 0.276 0.192 0.150 0.945 0.356 0.094 0.945 0.357 0.094 0.951 0.361 0.094
corr(mt, ft+4) 0.355 0.280 0.196 0.944 0.467 0.124 0.944 0.468 0.124 0.950 0.471 0.124

Notes: See Table 1.

Table 4. Statistics: Superior Information (nh = 5)

nm− = 0 nm− = 1 nm− = 3 nm− = 5

CP ALCI RMSE CP ALCI RMSE CP ALCI RMSE CP ALCI RMSE

σm 0.984 6081. 2239. 0.933 1634. 178.8 0.941 1654. 179.4 0.946 1664. 180.2
ρm 0.445 0.039 0.033 0.940 0.052 0.015 0.941 0.052 0.015 0.948 0.052 0.014

corr(mt, ft−4) 1.000 0.186 0.026 0.945 0.093 0.024 0.945 0.094 0.024 0.947 0.095 0.024
nf = 5 corr(mt, ft−2) 0.991 0.123 0.041 0.957 0.133 0.033 0.953 0.135 0.033 0.956 0.137 0.034

corr(mt, ft) 0.025 0.072 0.121 0.940 0.245 0.064 0.954 0.247 0.064 0.961 0.249 0.065
corr(mt, ft+2) 0.031 0.141 0.195 0.942 0.373 0.100 0.947 0.376 0.100 0.958 0.378 0.100
corr(mt, ft+4) 0.036 0.206 0.267 0.939 0.490 0.132 0.945 0.493 0.132 0.955 0.495 0.132

Notes: See Table 1.
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Table 5. Information Criteria

Akaike Information Criterion (AIC)

nh = 0 nh = 1 nh = 3 nh = 5

nm− = 0 nm− = 0 nm− = 1 nm− = 0 nm− = 3 nm− = 0 nm− = 5

nf = 1 0.840 0.000 1.000
nf = 3 0.371 0.000 0.180 0.000 1.000
nf = 5 0.094 0.000 0.000 0.000 0.009 0.000 0.996

Bayesian Information Criterion (BIC)

nh = 0 nh = 1 nh = 3 nh = 5

nm− = 0 nm− = 0 nm− = 1 nm− = 0 nm− = 3 nm− = 0 nm− = 5

nf = 1 0.980 0.000 1.000
nf = 3 0.856 0.000 0.793 0.000 0.939
nf = 5 0.588 0.000 0.010 0.000 0.635 0.000 0.362

Notes: Entries are the proportions of times that the AIC and BIC correctly select the alternative (standard or augmented) law of motion (7′) that adequately
specifies the true law of motion (2′) (nh = nm−), and incorrectly chose the standard law of motion (nh > nm− = 0). nm=nf is the number of nonpredetermined
and forcing variables in the rules (1) and in the true law of motion (2′), nh is the number of ‘relevant’ hidden variables in the true law of motion (2′), and nm−

is the number of nonpredetermined variables in the alternative (standard or augmented) law of motion (7′). nh = 0 (nh > 0) indicates the absence (presence)
of superior information. nm− = 0 (nm− > 0) corresponds to the standard (augmented) law of motion.
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