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Abstract

Two agents jointly operate a decreasing marginal returns technology to produce a private good.

We characterize the class of output-sharing rules for which the labor-supply game has a unique

Nash equilibrium. It consists of two families: rules of the serial type which protect a small user

from the negative externality imposed by a large user, and rules of the reverse serial type, where

one agent e¤ectively employs the other agent�s labor. Exactly two rules satisfy symmetry; a result

in sharp contrast with Moulin and Shenker�s (Econometrica, 1992) characterization of their serial

mechanism as the unique cost-sharing rule satisfying the same incentives property. We also show

that the familiar stand alone test characterizes the class of �xed-path methods (Friedman, Economic

Theory, 2002) under our incentives criterion.

Keywords: Joint production, serial rule, decreasing serial rule, strategyproofness.

JEL classi�cation numbers: C72, D23, D62.
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1 Introduction

When several producers jointly operate a production process, total output (or pro�ts) must be

shared as a function of their individual contributions (see Israelsen, 1980; Sen, 1966; Weitzman,

1974). This question applies whether the production structure is one of common access to the

production function (as in the so-called "commons problem") or one where property rights to the

technology are clearly de�ned. An extreme example of the latter is that of a monopolist hiring

workers.

The production possibilities are common knowledge and exhibit decreasing marginal returns,

but the individual leisure-consumption trade-o¤s are private information. We are concerned with

sharing rules with very strong incentives properties, so as to avoid undesirable phenomena like

free-riding or the familiar "tragedy of the commons". We demand that the input supply game

induced by the sharing rule, in which agents decide how much input to contribute to the production

process, admits a unique Nash equilibrium at all preference pro�les. We refer to this incentives

criterion as unique Nash incentive compatibility (UNIC). This criterion is in fact stronger than that

of strategyproofness (SP), under which it is a dominant strategy for every agent to behave according

to her true preference. Like SP, UNIC does not hinge on any informational assumptions and is

therefore more robust than, say, Bayesian incentive compatibility.1

In the two-agent case, we characterize the class of sharing rules which are monotonic (each

agent�s share is increasing in her own input contribution), smooth (the sharing rule is continuously

di¤erentiable in inputs) and which satisfy UNIC (Theorem 1). This class of sharing rules is made up

of two families which we call the "serial" family and the "reverse serial" family. An essential feature

of rules in the serial family is that the share of a relatively small supplier of input is una¤ected by

changes in the supply level of a large supplier (a feature called the "serial principle" in Sprumont,

1998) while the converse is true for rules of the reverse serial type: the share of a large supplier is

una¤ected by changes in the input level of a small supplier.

In addition, the externality imposed by a small user on large users is typically negative under

a serial rule. Conversely, a large supplier of input typically imposes positive externalities on small

suppliers under a reverse serial rule. Thus, with the exception of priority rules (which belong

to both families), we argue that serial rules are more adapted to the commons problem, with the

negative externality re�ecting congestion, while reverse serial rules correspond to a more "corporate"

production structure where the owner of the facility extracts rents from the labor contribution of a

worker.

In Section 5 we consider a popular axiom in the commons literature. The stand alone test (SA)

captures the essence of the commons problem by demanding that no agent be made better o¤ by the

presence of others than if she were operating the technology by herself (see, e.g., Moulin and Shenker,

1992; Suh, 1997; Sprumont, 1998; Hougaard and Thorlund-Pertersen, 2000). It turns out that SA

characterizes the output-sharing version of the class of �xed-path methods (FPMs) discussed in

Friedman (2002, 2004) (see Theorem 2). These sharing rules allocate marginal quantities of input,

and the corresponding amounts of output, along a prespeci�ed path in the agents� input space.

Among well-known FPMs are the Moulin and Shenker serial rule and priority rules, which follow

the diagonal of the positive orthant and an axis of the agents�input space, respectively.

1We refer the reader to a companion paper (Leroux, 2006) for a discussion of strategyproofness and UNIC relative
to Bayesian incentive compatibility.
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After relating our work to the existing literature (Section 2) we de�ne the serial and reverse

serial families of sharing rules (Section 3) and state our main characterization theorem (Theorem 1)

in Section 4. In Section 5 we characterize the class of FPMs by SA and UNIC (Theorem 2).

2 Relation to the literature

This work contributes to the large literature on the trade-o¤ between e¢ ciency and incentive com-

patibility.

Because mechanisms in the serial and reverse serial family satisfy UNIC, they fail to be �rst-best

e¢ cient (see Leroux, 2004). In fact, when coupled with the requirement that agents be treated

anonymously, UNIC is so restrictive as to pin down exactly two sharing rules (Corollary 1). These

rules are the output-sharing versions of the Moulin and Shenker serial rule (see Moulin and Shenker,

1992) and the de Frutos decreasing serial rule (see de Frutos, 1998) originally formulated in the cost-

sharing framework, where agents each demand a quantity of output and split the cost of meeting

total demand. Our result is in direct contradiction with Theorem 4 in Moulin and Shenker (1992)

which wrongly characterizes the surplus-sharing version of the serial rule as the only one satisfying

UNIC and anonymity. The argument there consists in stating that the surplus-sharing framework

is a mere rewriting of the cost-sharing one. In fact, as our result shows, it is not.

We believe that Moulin and Shenker�s false result has had a signi�cant impact on the direction

taken by the subsequent literature on the joint production of private goods. Indeed, we count

only two published papers framed in the surplus-sharing interpretation since 1992 (Maniquet and

Sprumont, 1999, and Leroux, 2004) against many more formulated in the cost sharing context (see,

for instance, Shenker, 1992; Sprumont, 1998; Friedman, 2002, 2004; Téjédo and Truchon, 2002; and

Alcalde and Angel-Silva, 2004, in addition to the above references.). It seems authors have focused

on cost-sharing problems with the implicit belief that all �ndings should carry over, unaltered, to

the surplus-sharing framework. Therefore, we feel our exposing this discrepancy between the two

models may help correct this unjusti�ed inbalance.

We should mention that the fact that Theorem 4 of Moulin and Shenker (1992) is wrong can be

inferred from a result in a yet unpublished paper by Suh (Suh, 1997). However, he fails to juxtapose

his �nding to the (false) result of Moulin and Shenker. Moreover, the aim of Suh (1997) is to classify

the output-sharing versions of the Moulin and Shenker serial rule and the de Frutos decreasing serial

rule with respect to their incentives and axiomatic properties: Suh does not attempt to characterize

the general class of incentive compatible sharing rules as we do here.

Regardless of the framework adopted, mapping out the class of strategy-proof or UNIC mecha-

nisms in economies with production of private goods remains a large open question. So far, authors

have mainly approached it by pairing SP with additional axioms: e.g. symmetry (Moulin and

Shenker, 1992; Suh, 1997), or individual rationality (Leroux, 2005). Our Theorem 1 is the �rst

to pin down the full class of UNIC rules for the two-agent case. Characterizing this class in the

many-agent case proves to be a much more di¢ cult task. Nonetheless, our results provide insights

regarding the kind of rules which one might expect to satisfy UNIC in that case. We refer the reader

to a companion paper (Leroux, 2005) for some intuition behind the technical di¢ culties which arise

with three or more agents.

The FPMs we characterize in Theorem 2 are the output-sharing versions of cost-sharing mech-
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anisms introduced Friedman (2002) as non-anonymous generalizations of the Moulin and Shenker

serial rule retaining its strong incentives properties. We show in a companion paper (Leroux, 2005)

that Theorem 2 does not extend to the many-agent case and discuss the appeal of FPMs in partner-

ship problems. We show there that to each FPM corresponds an equivalent distribution of property

rights to the production process, and vice versa.

Recent related literature on the common production of private goods considers weaker interpreta-

tions of incentive compatibility (see, e.g., Corchón and Puy, 2002; Shin and Suh, 1997). For instance,

Corchón and Puy establish that any continuous sharing rule admits a Pareto-e¢ cient allocation

which can be Nash-implemented. Yet, any game implementing such an outcome must have several,

non-welfare-equivalent Nash equilibria at some pro�les. Here we insist on the uniqueness of the Nash

equilibrium, a much more demanding requirement than the above kind of Nash-implementability.

3 The two families

Two agents jointly operate an increasing, strictly concave and continuously di¤erentiable production

function F : R+ ! R+ such that F (0) = 0. When each agent i supplies xi � 0 units of input, the
input vector x = (x1; x2) yields F (x1 + x2) units of total output.

Agent i�s utility from supplying xi � 0 and receiving yi � 0 units of output is ui(xi; yi); the

utility function, ui, is decreasing in xi, increasing in yi and quasi-concave. We denote by U the class
of utility functions. A preference pro�le (or a pro�le) is a pair (u1; u2) 2 U � U .
A sharing rule is a mapping � : R2+ ! R2+ such that �1(x) + �2(x) = F (x1 + x2) for all x, which

is smooth (� is continuously di¤erentiable) and monotonic ( @�i@xi
> 0 for i = 1; 2).

We denote by B the class of non-decreasing functions b : R+ ! R+[f+1g which are continuous
on R+ and increasing on ft � 0j0 < b(t) < +1g. I.e., b can only be constant on a range where it
returns zero or in�nity; also, its graph can have a vertical asymptote. We denote by F the class of

mappings from R+ to itself which are increasing, strictly concave and continuously di¤erentiable.

De�nition 1 A sharing rule � is of the serial type if there exists b 2 B and gs; hs 2 F s.t.

�(x) =

(
(gs(x1); F (x1 + x2)� gs(x1)) if x2 � b(x1)
(F (x1 + x2)� hs(x2); hs(x2)) if x2 � b(x1)

We denote by S the class of such rules.

The reader will notice that when x2 � b(x1) agent 1�s output share is una¤ected by changes in
x2 above b(x1); a symmetric statement holds if x2 � b(x1). Rules of the serial type protect low-level
users of the facility from the negative externalities imposed by high-level users above a certain level.

It is easily checked that S includes the output-sharing version of the Moulin and Shenker serial
rule (the serial rule, see Moulin and Shenker, 1992) with b(x1) = x1, gs(t) = hs(t) = 1

2F (2t); and of

the �xed-path methods discussed in Friedman (2002, 2004): with gs(x1) =
R x1
0
F 0(t+ b(t))dt and

hs(x2) =

(
F (x2) if x2 � b(0),
F (b(0)) +

R x2
b(0)

F 0(b�1(t) + t)dt otherwise.
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De�nition 2 A sharing rule � is of the reverse serial type if there exists b 2 B and gr; hr 2 F s.t.

�(x) =

(
(F (x1 + x2)� hr(x2); hr(x2)) if x2 � b(x1)
(gr(x1); F (x1 + x2)� gr(x1)) if x2 � b(x1)

We denote by R the class of such mechanisms.

Here, however, agent 2�s output level is una¤ected by changes in x1 below b�1(x2) if x2 � b(x1).2

If x2 � b(x1), a mechanism of the reverse serial type provides a compensation schedule, hr, for the

high-level supplier of input (agent 2, "the worker") whose labor bene�ts the low-level supplier (agent

1, "the employer").

Clearly, the decreasing serial rule (as in de Frutos [6]) belongs to R: b(x1) = x1, gr(t) = hr(t) =
1
2F (2t).

The intersection of R and S is nonempty. It is worth noting that the priority rules giving full
access to one agent belong to both families: for instance, both [b � 0; gs(x1) = F (x1)] and [b � +1;
gr(x1) = F (x1)] represent the rule giving priority to agent 1. More generally we denote by D1 (resp.
D2) the class of rules where b � 0 (resp. b � +1), such that agent 1 (resp. 2) is a dictator, and by
D � D1 [ D2 the class of dictatorships. The reader can easily check that R\ S = D.

4 Main result

Our main result is a full characterization of the class of sharing rules satisfying UNIC.

Theorem 1 Let � be a sharing rule. The following statements are equivalent:
i) � 2 S [R,
ii) the supply game associated with � (strategy xi, payo¤ ui(xi; �i(x))) admits at most one Nash

equilibrium at all pro�les in U � U ,
iii) (UNIC) the supply game associated with � admits exactly one Nash equilibrium at all pro�les

in U � U .

A standard result in the implementation literature (see Dasgupta et al., 1979) implies that the

direct mechanism associated with a sharing rule � 2 S [ R is SP. In this mechanism, each agent

reports a utility function in U and the outcome is the unique Nash equilibrium of the supply game

under the reported pro�le. Moreover, the unique Nash equilibrium of the supply game turns out

to be strong (easily checked), therefore the associated direct mechanism is also group-strategyproof

(i.e. invulnerable to coordinated manipulations).

The following corollary follows immediately upon noticing that the only symmetric rules in S[R
must be associated with b � IdR+ . Exactly two such rules exist:

Corollary 1 The output-sharing versions of the Moulin and Shenker serial rule and the de Frutos�
decreasing serial rule are the only two symmetric sharing rules satisfying UNIC.

It is shown in Suh (1997) that the above corollary continues to hold in the many-agent case. Suh�s

approach, which consists in comparing properties of the Moulin and Shenker serial rule and the de

2Note that from the de�nition of B, b�1(x2) exists for any positive x2 in the range of b.
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Frutos decreasing serial rule, is quite di¤erent from ours as he does not attempt to characterize the

class of incentive compatible sharing rules. While Suh�s result is interesting, restricting attention to

symmetric rules can be overly reductive when the production function arises from (possibly) unequal

capital contributions on the agents�part (see Leroux, 2005, for a discussion of asymmetric methods

and their economic interpretation in terms of property rights to the production process).

We give some intuition behind the discrepancy between the cost- and output-sharing models.

De�ne the cost function C � F�1; clearly, C and F are equivalent representations of the same

production possibilities. A cost-sharing rule, �, allocates to any vector of demands (y1; y2) 2 R2+
a cost vector (x1; x2) 2 R2+ such that x1 + x2 = C(y1 + y2). The Moulin and Shenker serial rule,

de�ned by

�MS
i (y) =

1

2
C(2yi) and �MS

j (y) = C(y1 + y2)�
1

2
C(2yi)

if yi � yj , is the only cost-sharing rule whose associated demand game has a unique Nash equilibrium
at all pro�les (Theorem 2 in Moulin and Shenker, 1992). In particular, the de Frutos decreasing

serial cost-sharing rule, de�ned by

�dFi (y) =
1

2
C(2yj) and �dFj (y) = C(y1 + y2)�

1

2
C(2yj)

if yi � yj , is not well de�ned when C is strictly convex (i.e. when F is strictly concave, as in our

framework) as it does not guarantee positive cost shares. This fact, in light of Corollary 1, suggests

that the di¤erence between the cost- and output-sharing versions of the sharing problem goes beyond

simple rewriting.

5 The stand alone test

Given that F exhibits decreasing marginal returns, the context is one of negative externalities where

the participation of each agent decreases the productivity of the others. In a commons problem

the mechanism designer may require that the sharing rule re�ects these negative externalities. We

propose the following interpretation of this requirement.

The stand alone test (SA) A sharing rule, �, satis�es SA if and only if

�i(x) � F (xi)

for all x 2 R2+ and i = 1; 2.

SA asks that no agent bene�ts from the presence of the other agent. We show that it characterizes

the output-sharing versions of the class of �xed-path methods (Friedman, 2002) among rules of the

serial and reverse serial family. Fixed-path methods allocate marginal increments of input� and

the corresponding amount of output� along a prespeci�ed continuous increasing path in the agents�

input space. With our notations, the class of �xed-path methods consists of the two priority rules

as well as some non-dictatorial serial rules:

FPM =

8><>:� 2 SnDj
gs(x1) =

R x1
0
F 0(t+ b(t))dt

and hs(x2) =

(
F (x2) if x2 � b(0),
F (b(0)) +

R x2
b(0)

F 0(b�1(t) + t)dt otherwise.

9>=>;[fP 1; P 2g
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where P ii (x) = F (xi) and P
i
j = F (xi + xj)� F (xi).3

Theorem 2 Let � 2 S [R, the following statements are equivalent:
i) � 2 FPM ,
ii) � satis�es SA.

Proof. Notation: De�ne X1 = fx1 > 0j0 < b(x1) < +1g and write X1 =]x1; �x1[. Notice that
X1 6= ; if and only if � =2 D.
i) =) ii) Suppose � 2 FPM . Consider the following property:
Cross Monotonicity (CM) A sharing rule, �, satis�es CM if and only if

@�i
@xj

� 0

on R2+ for i 6= j.
Because CM is more demanding than SA, it su¢ ces to show that � satis�es CM.4 If � = P 1, then

clearly @�1
@x2

� 0 and @�2
@x1
(x) = F 0(x1 + x2) � F 0(x1) � 0 for all x by the concavity of F . Similarly,

P 2 also satis�es CM.

If � 2 SnD, then

@�1
@x2

=

(
F 0(x1 + x2)� F 0(b�1(x2) + x2) if x2 � b(x1),
0 otherwise,

and
@�2
@x1

=

(
0 if x2 � b(x1),
F 0(x1 + x2)� F 0(x1 + b(x1)) otherwise.

The concavity of F ensures that these cross-derivatives are non-positive.

ii) =) i) Suppose � 2 D1, i.e. �(x) = (g(x1); F (x1 + x2) � g(x1)) for some g 2 F . By SA,
g(x1) � F (x1) and �2(x1; 0) = F (x1)� g(x1) � F (0) = 0 for all x1 � 0. Hence, g � F and � = P 1.
Similarly, if � 2 D2 then � = P 2.
Suppose � =2 D, we show that � =2 RnD. By contradiction, suppose � 2 RnD, then for any

x1 2 X1,

�2(x) = F (x1 + x2)� gr(x1) � F (x2) for any x2 � b(x1) by SA,
=) gr(x1) � F (x1 + x2)� F (x2) for any x2 � b(x1),
=) gr(x1) � F (x1) by concavity of F , choosing x2 = 0,

=) gr � F on X1, by SA (for agent 1).

Also, by smoothness

F 0(x1 + b(x1)) = g
r0(x1)

for all x1 2 X1 which is incompatible with both gr � F and the strict concavity of F .
3The reader can easily check that FPM � f� 2 SnDjgs(0) = hs(0) = 0g [ fP 1; P 2g: We thank an anonymous

referee for pointing out that this inclusion is strict.
4Under CM, budget balance and the positivity of output shares require:

F (xi) � �i(xi; 0) � �i(x) for all x and all i.
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Finally, we show that if � 2 SnD, then SA implies that � is an FPM. Notice that if 0 < b(0) < +1,
then �2(0; 0) = hs(0) = 0 and �1(0; b(0)) = gs(0) = 0. Similarly, the result holds if x1> 0 and if

b�1(f0g) = f0g. Integrating the smoothness condition,

F 0(x1 + b(x1)) = g
s0(x1) = h

s0(b(x1)) for all x1 2 X1,

between (0; 0) and a point (x1; x2) on the graph of b and taking into account the fact that gs(0) =

hs(0) = 0 yields:

gs(x1) =
R x1
0
F 0(t+ b(t))dt

and hs(x2) = F (b(0)) +
R x2
b(0)

F 0(b�1(t) + t)dt if x2 � b(0).

The proof is complete upon noticing that SA applied to agent 1 implies hs(x2) = F (x2) for any

x2 � b(0) (consider the pro�le (0; x2)).

6 Concluding comment

As recalled in Section 2, most of the existing literature on cooperative production is framed in the

cost-sharing context, with the general intuition that the output-sharing problem is a mere rewriting of

the cost-sharing problem (see, e.g., Section 8 of Moulin and Shenker, 1992). However, our Corollary

1 contrasts markedly with this view and exposes an error in a very in�uential article by Moulin and

Shenker which we suspect has been responsible for the direction taken by the subsequent literature

on the management of joint production processes.

This discrepancy between these two formulations of the same problem is reminiscent of a some-

what di¤erent �nding in Moulin and Watts (1997). They show that if given the choice between

playing the average cost game or the average returns game, individuals would unambiguously choose

the latter. We deem worthy of exploration whether adopting the cost- or output-sharing framework

has other practical consequences.

A Appendix

A.1 Proof of Theorem 1

i) =) iii) The proofs of the strategic properties of the Moulin and Shenker serial rule (See Moulin

and Shenker, 1992, Theorem 1) and of �xed-path methods (see Friedman, 2002) in the cost-sharing

context can be adapted to our setting. We nonetheless provide a proof for the sake of completeness.

We will use the following lemma extensively; its obvious proof is omitted.

Lemma 1 Suppose f; g 2 F coincide on the interval
�
��; �+

�
, and for any utility function, u,

denote �1 = max
�
u(�; f(�)) and �2 = max

�
u(�; g(�)). The following statements are true:

� �1 < �� i¤ �2 < ��,

� �1 > �+ i¤ �2 > �+,

� 8� 2
�
��; �+

�
, �1 = � i¤ �2 = �.
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The existence of a Nash equilibrium of the supply game is guaranteed by the convexity of pref-

erences and the (easily checked) fact that for any x, the boundary of each agent�s option set is the

graph of a strictly concave function: �1(�; x2) and �2 (x1; �), respectively. Each agent has a unique
best response to the other agent�s strategy.

We show uniqueness by contradiction. Fix a preference pro�le, and suppose the supply game ad-

mits two distinct Nash equilibria, x�and x��, at that pro�le. We claim that [b(x�1) � x�2 =) b(x��1 ) > x
��
2 ]

and [b(x�1) � x�2 =) b(x��1 ) < x
��
2 ]. Suppose not, and suppose without loss of generality that

b(x�1) � x�2 and b(x��1 ) � x��2 . Then, if � 2 R, observe that �2(x�1; �) � �2 (x��1 ; �) � hr(�) on the in-
terval [max fb(x�1); b(x��1 )g ;+1[ (and therefore on any closed subinterval). By Lemma 1, x�2 = x��2 .
Because agent 1 has a unique best response to x�2 (and to x

��
2 ) it follows that x

�
1 = x

��
1 , contradicting

the assumption that x� and x�� are distinct. If � 2 S, the argument is similar upon noticing that
�1(�; x�2) � �1(�; x��2 ) � gs(�) on the interval [0;min fx�2; x��2 g].
It follows from the argument of the previous paragraph that the supply game induced by � has

a unique Nash equilibrium at all pro�les if � 2 D since, for these sharing rules, the graph of the

boundary function coincides with one of the axes. Next, we only show uniqueness for the case

� 2 RnD as the argument is similar for � 2 SnD.
Let � 2 RnD and suppose without loss that b(x�1) � x�2 and b(x��1 ) > x��2 . We claim that b(x��1 ) �

x�2. If not, then x
�
2 > b(x

��
1 ) > x

��
2 . Also, �2(x

�
1; �) � �2(x��1 ; �) � hr(�) on [max fb(x�1); b(x��1 )g ;+1[;

see Figure 1 (drawn for the case b(x��1 ) � b(x�1)). It follows from Lemma 1 and x�2 � maxfb(x�1); b(x��1 )g
that x��2 � b(x��1 ), a contradiction of our assumption. We now show that b(x

��
1 ) � x�2 (and hence

b(x��1 ) = x
�
2). The argument is similar: suppose x

�
2 < b(x

��
1 ), then b(x

��
1 ) > x

�
2 > b(x

�
1). Notice that

�1(�; x�2) � �1(�; x��2 ) � gr(�) coincide on [max
�
b�1(x�2); b

�1(x��2 )
	
;+1[ with b�1(x��2 ) to be taken to

equal to infft > 0j0 < b(t) <1g if x��2 = 0. Thus, Lemma 1 implies, along with the fact that x��1 �
max

�
b�1(x�2); b

�1(x��2 )
	
, the contradiction that b(x�1) = b(x

��
1 ) � x�2. The same two-part argument

can be invoked to prove b(x�1) = x
��
2 : We now have b(x

��
1 ) = x

�
2 > b(x

�
1) = x

��
2 . Applying Lemma 1

once again to the fact that �1(�; x�2) � �1(�; x��2 ) � gr(�) coincide on [max
�
b�1(x�2); b

�1(x��2 )
	
;+1[

yields b(x�1) = b(x
��
1 ) = x

�
2, a contradiction.

iii) =) ii) Obvious.

ii) =) i) Let � be a sharing rule for which the associated supply game has at most one Nash

equilibrium at all pro�les, we show � 2 S [R.
Notation: We say that a 2 � 2 matrix, [�ij ], is acyclic if �12�21 = 0. We say that a sharing

rule, �, is acyclic at a point x 2 R2+ if the Jacobian matrix of � at x,
h
@�i
@xj
(x)
i
, is acyclic. We

de�ne NE =
n
x 2 R2+j

@�1
@x2
(x) 6= 0 and @�2

@x1
(x) = 0

o
, SW =

n
x 2 R2+j

@�1
@x2
(x) = 0 and @�2

@x1
(x) 6= 0

o
and D =

n
x 2 R2+j

@�1
@x2
(x) = @�2

@x1
(x) = 0

o
.

We start the proof by restating a lemma from the proof of Theorem 2 in Moulin and Shenker

(1992), which still holds in our setting. It is related to the �nding that strategy-proof mechanisms

must be acyclic at di¤erentiable points (see Satterthwaite and Sonnenschein, 1981).

Lemma 2 (Lemma 5 in [12]) If the supply game associated with � has at most one Nash equilibrium
for all pro�les in U � U , then � is acyclic at all x 2 R2+.

It is clear from acyclicity that NE, SW and D form a partition of R2+ and from smoothness that
NE and SW are open whereas D is closed.
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Figure 1: An impossible con�guration.

Claim 1 a) � can be written as

�(x) = (g(x1); F (x1 + x2)� g(x1))

on any connected open subset of SW for some mapping g 2 F .
b) � can be written as

�(x) = (F (x1 + x2)� h(x2); h(x2))

on any connected open subset of NE for some mapping h 2 F .

Proof. We only prove statement a). By de�nition, @�1
@x2

� 0 on SW , which implies that for any

connected open subset, �, of SW there exists a mapping g such that �1(x) = g(x1) on �; also,

budget balance requires �2(x) = F (x1 + x2) � g(x1) on �. The monotonicity and smoothness of �
imply that g must be strictly increasing and continuously di¤erentiable, respectively.

It remains to show the strict concavity of g. Consider any x 2 � and " > 0 such that the

closed ball, �B(x; "), is included in � and suppose g is convex on [x1 � "; x1 + "]. Because for any
s 2 [x1 � "; x1 + "], �2(s; �) � F (s + �) � g(s) is strictly concave, one can �nd a utility function u2
such that x2 is agent 2�s best response to any s 2 [x1 � "; x1 + "].5 Then, one can construct a utility
function u1 such that u1(x1 � "; g(x1 � ")) = u1(x1 + "; g(x1 + ")) = max[x1�";x1+"] fu1(s; g(s))g;
see Figure 2. By monotonicity of �1(�; x2) and convexity of preferences, one can �nd u1 "convex
enough" such that u1(x1 � "; g(x1 � ")) = u1(x1 + "; g(x1 + ")) = maxfsj(s;x2)2�g fu1(s; �1(s; x2))g.
Hence, both (x1 � "; x2) and (x1 + "; x2) are Nash equilibria of the supply game, contradicting the

5E.g. by making the indi¤erence curves of agent 2�s preference arbitrarily close to being right-angled.
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Figure 2: Multiple equilibria may exist if g is not strictly concave.

uniqueness assumption.

The remainder of the proof consists in establishing that the boundary between NE and SW is

increasing and is the graph of some increasing real-valued function. But �rst we must make sure

that this boundary exists.

Claim 2 i) D has empty interior,

ii) there exists a boundary, B, between NE and SW , if both are nonempty,

iii) B � D.

Proof. Suppose i) is false and consider an open neighborhood in D containing 4 points xA, xB , xC ,

xD such that xC (resp. xD) lies North of xA (resp. xB) and xB (resp. xD) lies East of xA (resp.

xC); see Figure 3.

Notice that budget balance requires �1(x) + �2(x) = F (x1 + x2) for all x, which implies:

@�1
@x1

(x) +
@�2
@x1

(x) = F 0(x1 + x2) (1)

for all x 2 R2+. Therefore,
@�1
@x1
(x) = F 0(x1 + x2) on D. Thus, taking the integral between xA

and xB yields �1(x
B) = �1(x

A) + F (xB1 + x
B
2 ) � F (xA1 + xA2 ); also, �1(xD) = �1(x

B) because
@�2
@x1

� 0 on D. Therefore �1(x
D) = �1(x

A) + F (xB1 + x
B
2 ) � F (xA1 + xA2 ). Similarly, �1(xD) =

�1(x
C) + F (xD1 + x

D
2 )� F (xC1 + xC2 ) = �1(xA) + F (xD1 + xD2 )� F (xC1 + xC2 ), which implies

F (xB1 + x
B
2 )� F (xA1 + xA2 ) = F (xD1 + xD2 )� F (xC1 + xC2 ),

a clear contradiction of the strict concavity of F . Therefore D is of empty interior and the boundary

between NE and SW exists; smoothness implies that the latter is contained in D.
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Figure 3:

We call any continuous path of R2+ which is a subset of B a portion of the boundary.

Claim 3 B does not contain vertical or horizontal portions.

Proof. Suppose B contains a non-degenerate horizontal portion
�
x�1 ; x

+
1

�
�fx2g. Smoothness, along

with the fact that B � D and Claim 1 imply h0(x2) = g0(x1) for all x1 in some non-degenerate sub-

interval of
�
x�1 ; x

+
1

�
for some mappings g; h 2 F , contradicting the strict concavity of g. Similarly,

B cannot contain a vertical portion.

Claim 4 On a portion of B, x2 increases with x1.

Proof. As above, h0(x2) = g0(x1) must hold at any point on the boundary and the claim holds true

by strict concavity of g and h.

We introduce some more notation. We de�ne the sets SW+ =
n
x 2 SW j@�2(x)@x1

> 0
o
and SW� =n

x 2 SW j@�2(x)@x1
< 0

o
; the sets NE+ and NE� are similarly de�ned. By smoothness, these four

sets are open.

Claim 5 a) SW� is north-comprehensive: SW� + f0g � R+ � SW�,

b) SW+ is south-comprehensive: SW+ + f0g � R� � SW+,

c) NE� is east-comprehensive: NE� + R+ � f0g � NE�,
d) NE+ is west-comprehensive: NE+ + R� � f0g � NE+.

Proof. We only prove statement a). Let x 2 SW�, and consider an open neighborhood of x

contained in SW�. On that neighborhood, @�1
@x2

= 0, i.e. �1 is independent of x2; in particular,

the ratio �1(x1+";x2)��1(x1;x2)
" is also independent of x2 on that neighborhood for small values of

". Taking the limit, @�1@x1
is independent of x2 on a neighborhood of x. By the strict concavity of

F , expression (1) implies that @�2
@x1

must be decreasing in x2: In addition, because x 2 SW�, we

have @�2
@x1
(x) < 0; it follows that @�2

@x1
(x1; x2 + �) < 0 for any � > 0. Thus, by acyclicity, SW� is

north-comprehensive.

13



Figure 4:

More notation. We denote by SW�=NE� a portion of B with SW� (resp. NE�) in the

immediate northwest (resp. southeast) vicinity of the boundary. NE+=SW+ portions are similarly

de�ned.

Claim 6 B consists only of SW�=NE� and NE+=SW+ portions.

Proof. From the previous claim. Because SW� is north-comprehensive and because B is included

in D, there cannot be any points in SW� south of B. Similarly, there cannot be any points in SW+

(resp. NE�, NE+) north (resp. west, east) of B.

We complete the proof of the claim by showing that any portion of B containing a SW�=NE�

(resp. NE+=SW+) subportion must be a SW�=NE� (resp. NE+=SW+) portion. Suppose there

exists a portion of B containing both a SW�=NE� and a NE+=SW+ subportion. By the com-

prehensiveness of SW� and NE+, it must be that the SW�=NE� subportion lies to the northeast

of the NE+=SW+ subportion (see Figure 4). Yet, the north-comprehensiveness of SW� and the

west-comprehensiveness of NE+ imply that there exists a horizontal, vertical or decreasing portion

of B; a contradiction (Claim 4).

Claim 7 No point of B can lie northwest of another.

Proof. Suppose the claim is not true and let x, x0 2 B such that x01 > x1 and x02 < x2:6 The reader
can check that by Claim 5, x and x0 belong to two portions of di¤erent type. W.l.o.g. assume x

belongs to a NE+=SW+ portion and x0 belongs to a SW�/NE� portion.

De�ne �x1 > x1 to be the smallest real number such that (�x1; t) =2 SW+ for any t � 0 if such a
number exists; if not, de�ne �x1 = x01. Denote by b : [x1; �x1[! R+ the function whose graph is the
north boundary of SW+. Note that by the south-comprehensiveness of SW+, b is well de�ned on

[x1; �x1[; and by the smoothness of �, b is continuous:

6Clearly, Claim 5 implies x01 6= x1 and x02 6= x2.
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We show that b de�nes a NE+=SW+ portion on every interval where it is increasing. Indeed,

suppose there exists x�1 2]x1; �x1[ and " > 0 such that the immediate vicinity north of the graph of
b, V � B((x�1; b(x�1)); ") \ fxjx1 2 [x1; �x1[; x2 > b(x1)g, does not intersect NE+; i.e., such that

V \NE+ = ;.

Then claims 5 and 6 imply V � SW�, which leads to a contradiction by implying the existence of

a horizontal, vertical or decreasing portion of B as in the proof of the previous claim.

We now show that b must be increasing on its domain. Indeed, the immediate vicinity north of

the graph of b cannot intersect NE+ on a non-degenerate non-increasing interval of b (Claim 4), nor

can it intersect NE� (by east-comprehensiveness of NE�, north-comprehensiveness of SW� and

the fact that x0 belongs to a SW�/NE� portion) or SW+ (by de�nition of b); hence it is a subset

of SW�, thus leading to the same contradiction as in the previous paragraph.

Finally, because b is increasing on [x1; �x1[, �x1 is indeed the smallest number such that (�x1; t) =2
SW+ for any t � 0 (the north-comprehensiveness of SW� implies this fact even if �x1 was originally

taken to be equal to x01). It follows that a subset of f�x1g � R+ belongs to the boundary of SW+,

contradicting the fact that SW+ cannot have a vertical boundary (easily proved, as in Claim 3).

Claim 8 B is the graph of a non-decreasing function b : R+ ! R+ [ f+1g which is continuous
and increasing on ft � 0j0 < b(t) < +1g.

Proof. If NE = ; or SW = ;, the boundary B is vacuously de�ned: set b � 0 or b � +1.
If NE 6= ; and SW 6= ;, de�ne the set X1 = fx1 2 R+j9x2 > 0 s.t. (x1; x2) 2 Bg. By the

previous claims (2, 4 and 7), X1 is an interval and there exists a continuous and increasing function

b : X1 ! R+ whose graph is B \ (X1 � R+). We extend the domain of b by setting b(x1) = 0 for all
x1 � infX1 if infX1 > 0 and by de�ning b(x1) = +1 for all x1 � supX1 if supX1 exists.
Conclusion of the proof: The statement of Theorem 1 follows from claims 1 and 8.
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