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Abstract

We propose a novel methodology for forecasting chaotic systems which
is based on the nearest-neighbor predictor and improves upon it by in-
corporating local Lyapunov exponents to correct for its inevitable bias.
Using simulated data, we show that gains in prediction accuracy can be
substantial. The general intuition behind the proposed method can read-
ily be applied to other non-parametric predictors.

1 Introduction

When taking a deterministic approach to predicting the future of a system,
the main premise is that future states can be fully inferred from the current
state. Hence, deterministic systems should in principle be easy to predict. Yet,
some systems can be di¢ cult to forecast accurately: such chaotic systems are
extremely sensitive to initial conditions, so that a slight deviation from a tra-
jectory in the state space can lead to dramatic changes in future behavior. We
propose a novel methodology for forecasting deterministic systems which can
then be extended to chaotic time series. For illustrative purposes, we describe
how our methodology can be used to improve upon the nearest-neighbor pre-
dictor, but the same intuition can be applied to any non-parametric predictor
(such as methods based on kernels, radial functions, neural nets, wavelets, etc.;
see [1] and [2]) as it corrects for their inevitable bias by incorporating addi-
tional information on the local chaoticity of the system via the so-called local
Lyapunov exponents (LLE).
The nearest-neighbor predictor has proved to be a simple yet useful tool for

forecasting chaotic systems (see [3]). In the case of a one-neighbor predictor, it
takes the observation in the past which most resembles today�s state and returns
that observation�s successor as a predictor of tomorrow state. The rationale
behind this nearest-neighbor predictor is quite simple: given that the system
is assumed to be deterministic and ergodic, one obtains a sensible prediction
of the variable�s future by looking back at its evolution from a similar, past
situation. For predictions more than one step ahead, the procedure is iterated
by successively merging the predicted values with the observed data.
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The nearest-neighbor predictor performs reasonably well in the short run
but is not satisfactory for even medium-run predictions ([4], [5]). The generally
accepted intuition being that the two trajectories (of the current state and of its
neighbor) will have separated signi�cantly by then, and the nearest neighbor�s
medium-run future will have little to do with the future we are trying to predict.
Intuitively, this failure to perform well in the medium run arises mainly from
the fact that short-run predictions are not accurate enough to withstand the
complex dynamics of the system and to remain accurate after being iterated
over a period of time of signi�cant length. We argue that this lack of accuracy
is inherent to the prediction method itself because the nearest neighbor on which
predictions are based can never exactly coincide with today�s state (or else the
underlying process, being deterministic, would also be periodic and, thus, could
not be chaotic).
We aim to correct the above shortcoming by incorporating information car-

ried by the system�s LLEs into the prediction. The LLE (see [6], [7]) represents
the local dispersion rate of the system at a given point: a positive value meaning
that two nearby points in the state space tend to grow apart over time, while
a negative value indicates that nearby points will come closer together in the
near future (but may diverge later on). In other words, the LLE is a measure
of local chaoticity of a system. Typically, even a �globally chaotic� system is
made up of both �chaotic regions" where the LLE is positive and more stable
regions where it is negative. We illustrate this fact, which has been suggested
in [8], more systematically in a companion paper.
By de�nition, the LLE tells us precisely by how much the distance between

the current state and its nearest neighbor will expand (or contract) over time,
so that we can easily obtain the distance between the nearest-neighbor predictor
(i.e., the neighbor�s successor) and the future we are trying to predict (tomor-
row�s state). Thus, we know exactly by how much to correct the prediction of
the nearest-neighbor predictor.1 To the best of our knowledge, no work has yet
been done in this direction.
The rest of the paper is organized as follows. In Section 2, we develop our

methodology by �rst pointing out why the nearest-neighbor predictor informa-
tion on is biased and then suggesting how to correct this bias using information
carried by the system�s LLEs. In Section 3, we present simulations carried out on
known chaotic systems to illustrate the extent of the (large) potential accuracy
gains our methodology generates. Finally, Section 4 concludes by discussing the
signi�cance of the approach we propose and by pointing to directions in future
work in order to re�ne it.

1Note that correction is required even in regions of the state space where the system is
stable (i.e., where nearby trajectories come closer together, corresponding to a negative value
of the LLE).
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2 Methodology

Consider a one-dimensional series of T observations from a chaotic system,
(x1; :::xT ), whose future values we are trying to forecast. Recall that a chaotic
system is characterized by the existence of an attractor in a d-dimensional
phase space (see [9]), where d > 1 is the embedding dimension.2 A pos-
sible embedding method involves building a d-dimensional orbit, (Xt), with
Xt = (xt; xt�� ; :::; xt�(d�1)� ). For the sake of exposition, we shall assume � = 1
in the remainder of the paper.
By de�nition, the local Lyapunov exponent (or LLE) of a dynamical sys-

tem which characterizes the rate of separation of in�nitesimally close points
of an orbit. Quantitatively, two neighboring points in phase space with initial
separation �X0 are separated, t periods later, by the distance:

j�Xj � j�X0je�0t,

where j � j represents the modulus of the considered vectors and �0 is the local
Lyapunov exponent of the system in the vicinity of the initial points. Typically,
this local rate of divergence (or convergence, if �0 < 0) depends on the orienta-
tion of the initial vector �X0. Thus, strictly speaking, a whole spectrum of local
Lyapunov exponents exists, one per dimension of the state space. A dynamic
system is considered to be (locally) chaotic if �0 > 0, and (locally) stable if
�0 < 0. (see, e.g., [8])
Our goal is to exploit the local information carried by the LLEs to improve

upon existing methods of reconstruction and prediction. We propose a method-
ology which builds upon the classical nearest-neighbor predictor, which we now
recall. Consider an orbit (X1; :::; XT ) whose one-step-ahead future, XT+1, we
are trying to predict. The nearest-neighbor predictor returns X̂T+1 = Xi+1,
where Xi is the element of the orbit with minimal distance to XT . Because
the dynamic system at hand is aperiodic (or else, forecasting would not be
an issue), the nearest-neighbor predictor is inevitably biased. Indeed, because
jXT �Xij > 0, it must also be the case that:

jX̂T+1 �Xi+1j � jXT �Xije�i > 0; (1)

where �i can be approximated in practice by the following expression:

�̂i = ln
jXi+1 �Xj+1j
jXj �Xj j

with Xj = arg min
t6=i;T

jXt �Xij (2)

It follows from Expression (1) that knowing the distance between the pre-
dictee and the nearest neighbor as well as the LLE at the nearest neighbor allows
us to predict the distance of the predictee�s image to the neighbor�s image. Note
that this is true regardless of the sign of �i; i.e., regardless of whether the sys-
tem is locally chaotic or locally stable. Moreover, because the orbit considered

2The choice of the embedding dimension has been the object of much work (see [10] for a
survey) and is beyond the scope of this note.
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results from the embedding of a one-dimensional series, we also know all but
the �rst coordinate of XT+1 = (xT+1; xT ; :::; xT�d+2). Hence, XT+1 lies at the
intersection of the sphere of radius jXT � Xije�̂i centered on XT and the line
de�ned by f(z; xT ; :::; xT�d+2)jz 2 Rg which, in the Euclidean space, amounts
to solving the following polynomial for z 2 R:

(z � xi+1)2 + (xT � xi)2 + :::+ (xT�d+2 � xi�d+2)2 � jXT �Xije�̂i = 0 (3)

Typically, two candidates emerge, x̂�T+1 and x̂
+
T+1, respectively underestimating

and overestimating the true value of observation xT+1(see Figure 1 in Appen-
dix)3 .
One di¢ culty lies in determining when the nearest-neighbor predictor overes-

timates or underestimates the true value to be predicted. Being able to discrim-
inate accurately between x̂�T+1 and x̂

+
T+1 may lead to signi�cant improvements

upon the nearest-neighbor predictor.

3 Simulations

We illustrate our point by simulating two well-known chaotic systems: the
Lorenz system (see [12]) and the logistic map (see [13]). The Lorenz system
is characterized by the following system of di¤erential equations:8<:

dx
dt = �(y � x)

dy
dt = x(R� z)� y

dz
dt = xy � bz

We simulated this system with values � = 16, R = 45:92 and b = 4, initial values
x0 = �10, y0 = �10 and z0 = 30, and a step size of 0.01, integrated every �fth
step. Taking the last 4,000 of our 5,000 observations to ensure that we are work-
ing within the attractor and considering the values on the x-coordinate as its
own series, we successively predicted the last 1,000 in-sample observations. Each
prediction was carried out with the full (and true) information set leading up to
it, each time using the best of the two candidates, x̂�T+1 and x̂

+
T+1(measured in

distance to the� known� successor). We obtain results which are always better
than with the nearest-neighbor predictor and a mean-squared error which is half
that of the nearest-neighbor predictor.
The logistic map is de�ned by:

xt+1 = 4xt(1� xt),

Keeping the last 4500 of 5000 iterations, embedded in dimension 2, we predicted
the in-sample 5001st observation of 1000 simulated trajectories with initial val-
ues drawn from U(0,1). We again obtain results which are always better than
with the nearest-neighbor predictor and much smaller mean squared errors: of
the order of 10�11 as opposed to 10�7 with the nearest-neighbor predictor; i.e.
the best-candidate predictor is one hundred times more accurate!

3The situation whereby Expression (3) has no real solution would only arise if �i had been
greatly underestimated, which has never occured to us in practice using Expression (2).
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4 Concluding comments

The above preliminary analysis goes to show that there is great potential in
improving upon the accuracy of the nearest-neighbor predictor by incorporating
the information contained in local Lyapunov exponents as in Expression (1).
Moreover, such increased precision in short-run prediction shall translate into
accuracy gains for medium-run predictions, which is currently unsatisfactory
with existing techniques. The general intuition behind the proposed method
can readily be applied to other non-parametric predictors.
Several aspects of the implementation are still to be re�ned, and will be

the object of future work. For instance, consistently discriminating between
the two candidates,x̂�T+1 and x̂

+
T+1, can prove to be a di¢ cult task due to the

inherent chaotic nature of the systems at hand. As a �rst guess, one can select
the candidate which maximizes the colinearity between the Xi+1 � Xi vector
and the vector X̂T+1 �XT (with X̂T+1 standing for X̂�

T+1 or X̂
+
T+1). With the

simulation of the Lorenz system described above, we achieve 97.5% accuracy, .
Nonetheless, even considering only the observations where this so-called "LLE-
corrected nearest-neighbor predictor" chooses the wrong candidates, errors are
of the same order of magnitude as obtained with the classical nearest-neighbor
estimator for the Lorenz system. This suggest that our LLE-corrected predic-
tor still performs... On the other hand, we obtain only 66% accuracy with the
logistic map. This is quite intuitive as the Lorenz system is "much less chaotic"
than the logistic map (in the sense that its LLEs are "less often" positive and
typically smaller than those of the logistic map; we elaborate on such distinc-
tions of chaoticity in a companion paper) and, hence, is better behaved. Thus,
with our rule of thumb, we achieve accuracy gains which are close to those ob-
tained with best-candidate predictor on the Lorenz system. However, in the
case of the logistic map (and highly chaotic systems, in general) our selector
still needs re�ning. In another companion paper, we propose speci�c methods
to improve upon the above rule of thumb to discriminate between candidates
and, ultimately, yield better prediction results.
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