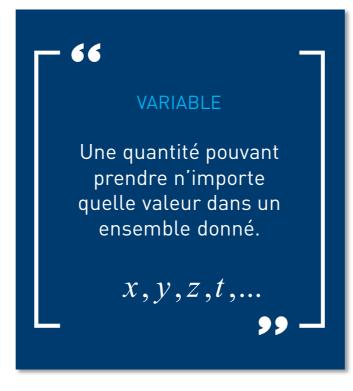

HEC MONTREAL

DÉPARTEMENT DE SCIENCES DE LA DÉCISION FATIHA KACHER - Maître d'enseignement CENTRE D'AIDE EN MATHÉMATIQUES ET STATISTIQUE MICHEL KEOULA - Coordonnateur



DÉFINITIONS ET CARACTÉRISTIQUES

1 DÉFINITIONS ET CARACTÉRISTIQUES

Exemple:

Constantes et variables d'un terme

TERMES	CONSTANTES	VARIABLES
3/4	3/4	Aucune
$\frac{\pi}{2}r^2$	$\frac{\pi}{2}$	r
y z	1	y et z
ax^2 , $a \neq 0$	а	x
$-2xyz^2$	-2	x,yetz

DÉFINITIONS ET CARACTÉRISTIQUES

Une expression algébrique résultant d'une somme ou une différence de termes dans lesquels les exposants des variables sont des entiers positifs ou nuls.

Exemple:

$$2x^2 + x - 3$$
 $\pi x + yz$

$$\frac{1}{3}t^2 - 2t \qquad x + y - z + t$$

$$2x+1$$

Exemple:

$$ax^2 \qquad xy^3$$

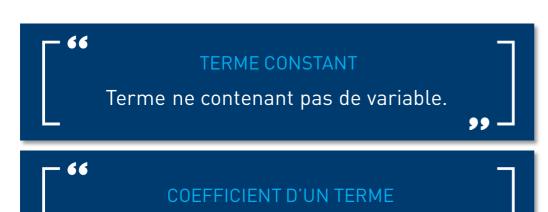
-3

 πx yz

Exemple:

$$2x + 1$$

 $ax^2 + bx$, $où a \ et b \neq 0$


$$2x^2 + x - 3$$

$$x^2 + xy + 1$$

$$2x^2 + x + \sqrt{6}$$

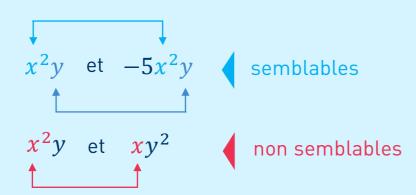
DÉFINITIONS ET CARACTÉRISTIQUES DEGRÉ D'UN POLYNÔME

99 _

Constante du terme

DEGRÉ D'UN TERME D'UN POLYNÔME Somme des exposants qui composent le terme. 99 _

- 66 DEGRÉ D'UN POLYNÔME Le plus grand des degrés de ses termes. **Exemples :** Degré des termes ou du polynôme


TERME	DEGRÉ
$\frac{3}{4} = \frac{3}{4}x^{0}$	0
yz	2
y^2	2
$-2xyz^2$	4
$5x^2 + xy^3 - 3$	4
x + y - z + t	1

Termes semblables : seuls les coefficients peuvent faire la différence entre les termes.

Monômes à une variable:

$$x^2$$
 et $-5x^2$ sont des termes semblables

Les monômes, à une variable, de même degré sont des termes semblables.

DÉFINITIONS ET CARACTÉRISTIQUES POLYNÔME DE DEGRÉ N À UNE VARIABLE

P = ax + b, $a \neq 0$ polynôme de degré 1 à une variable

$$P = ax^2 + bx + c$$
, $a \neq 0$ \longrightarrow polynôme de degré 2 à une variable

$$P = a_n x^n + a_{n-1} x^{n-1} + a_{n-2} x^{n-2} + \ldots + a_1 x + a_0, \quad a_n \neq 0 \quad \longrightarrow \text{ polynôme de degré } n \text{ à une variable}$$

Exemple:

Degré d'un polynôme à une variable

Expression Degré, si l'expression est un polynôme $\sqrt{2} x^2 + 1$ Polynôme de degré 2 $1-x+2x^2+\frac{1}{2}x^5$ Polynôme de degré 5 $\frac{3}{2x^{\frac{3}{2}}}$ -2x+1n'est pas un polynôme à cause de $x^{\frac{3}{2}}$

RACINE (OU ZÉRO) D'UN POLYNÔME DE DEGRÉ N À UNE VARIABLE

est une racine du polynôme P

x=1

EVALUER UN POLYNÔME EN UN POINT

$$P = x^{2} - 2x + 1 \Rightarrow P\Big|_{x=3} = 3^{2} - 2(3) + 1 \qquad P = x^{2} - 2x + 1 \Rightarrow P\Big|_{x=1} = 1^{2} - 2(1) + 1$$

$$= 4$$

$$P = x^{2} - 2x + 1 \Rightarrow P|_{x=1} = 1^{2} - 2(1) + 1$$

RACINE (OU ZÉRO) D'UN POLYNÔME :

$$P=a_nx^n+a_{n-1}x^{n-1}+a_{n-2}x^{n-2}+\ldots+a_1x+a_0$$
 , $a_n\neq 0$ \longrightarrow polynôme de degré n à une variable

• Une racine (ou un zéro) du polynôme P est une valeur réelle r_0 telle que

$$P\Big|_{x=\mathbf{r}_0} = a_n \mathbf{r}_0^n + a_{n-1} \mathbf{r}_0^{n-1} + a_{n-2} \mathbf{r}_0^{n-2} + \dots + a_1 \mathbf{r}_0 + a_0 = 0$$

ADDITION ET SOUSTRACTION DE POLYNÔMES À UNE VARIABLE

Additionner ou soustraire des polynômes : consiste à regrouper les termes semblables et à additionner ou soustraire les constantes correspondantes

Exemple: Polynômes à une variable

Addition de
$$x^2 + x$$
 et $2x^3 - x^2 - 3x$

$$x^{2} + x + 2x^{3} - x^{2} - 3x = 2x^{3} + (-x^{2} + x^{2}) + (-3x + x)$$
$$= 2x^{3} + 0 + (-2x)$$
$$= 2x^{3} - 2x$$

Soustraction de
$$x^2 + x$$
 et $2x^3 - x^2 - 3x$

$$x^{2} + x - (2x^{3} - x^{2} - 3x) = x^{2} + x - 2x^{3} + x^{2} + 3x$$
$$= -2x^{3} + (x^{2} + x^{2}) + (x + 3x)$$
$$= -2x^{3} + 2x^{2} + 4x$$

$$x^2 + x$$

$$+2x^3-x^2-3x$$

$$2x^3 + 0 - 2x$$

$$x^2 + x$$

$$-(2x^3-x^2-3x)$$

$$-2x^3 + 2x^2 + 4x$$

ADDITION ET SOUSTRACTION DE POLYNÔMES À DEUX VARIABLES OU PLUS

Additionner ou soustraire des polynômes : consiste à regrouper les termes semblables et à additionner ou soustraire les constantes correspondantes

Exemple: Polynômes à deux variables ou plus

Addition de
$$-x^3y + x^2y + xy$$
 et $2x^3y - x^2y^2 - 3xy$

$$-x^{3}y + x^{2}y + xy + 2x^{3}y - x^{2}y^{2} - 3xy x^{3}y - x^{2}y^{2} + x^{2}y - 2xy$$

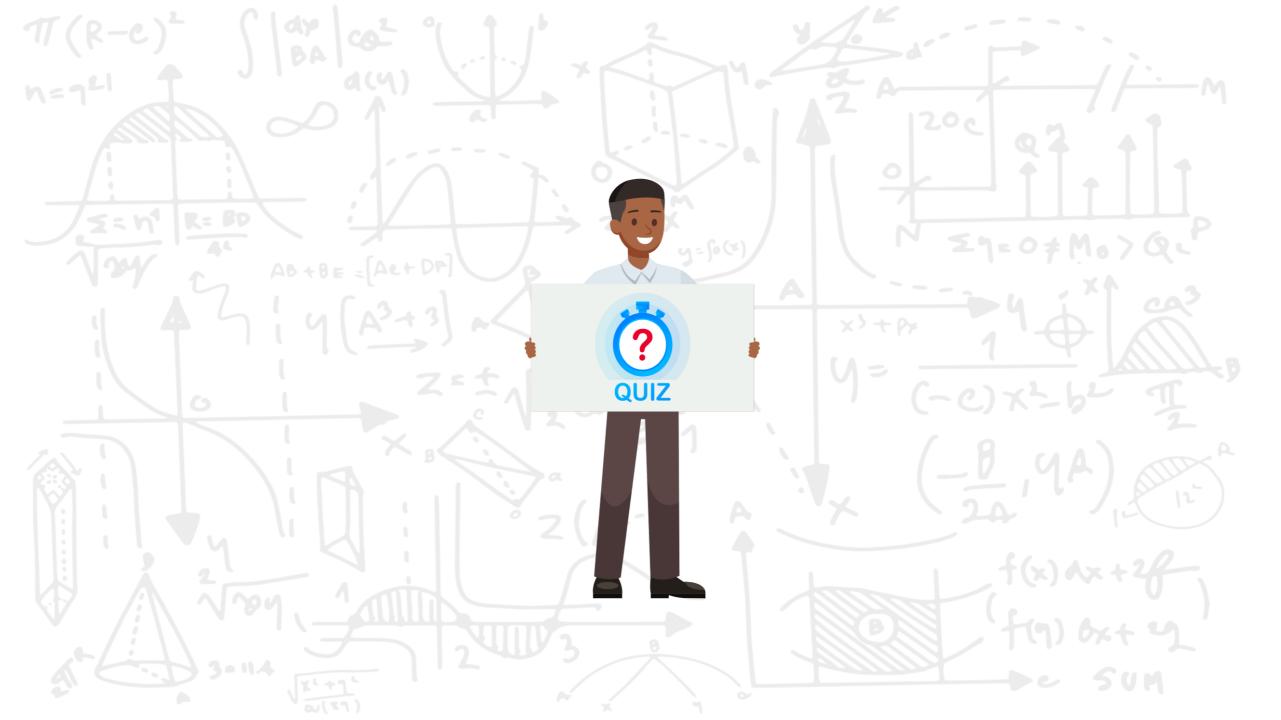
Soustraction : ajouter l'opposé du deuxième polynôme, soit $-2x^3y + x^2y^2 + 3xy$

$$-x^{3}y + x^{2}y + xy$$

$$+ -2x^{3}y + x^{2}y^{2} + 3xy$$

$$-3x^{3}y + x^{2}y^{2} + x^{2}y + 4xy$$

RÉSUMÉ POLYNÔMES – ADDITION ET SOUSTRACTION


Polynômes : somme ou une différence de termes dans lesquels les variables sont affectées d'exposants entiers positifs ou nuls.

Degré du polynôme : le plus grand des degrés de ses termes.

Addition et soustraction : par regroupement de termes semblables.

- Michèle Gingras, Mathématique d'appoint, 5e édition, 2015, Éditeur Chenelière éducation.
- Josée Hamel, Mise à niveau Mathématique, 2e édition, 2017, Éditeur Pearson (ERPI)

HEC MONTREAL

DÉPARTEMENT DE SCIENCES DE LA DÉCISION CENTRE D'AIDE EN MATHÉMATIQUES ET STATISTIQUE 2020

Direction de l'apprentissage et de l'innovation pédagogique Service de l'audiovisuel