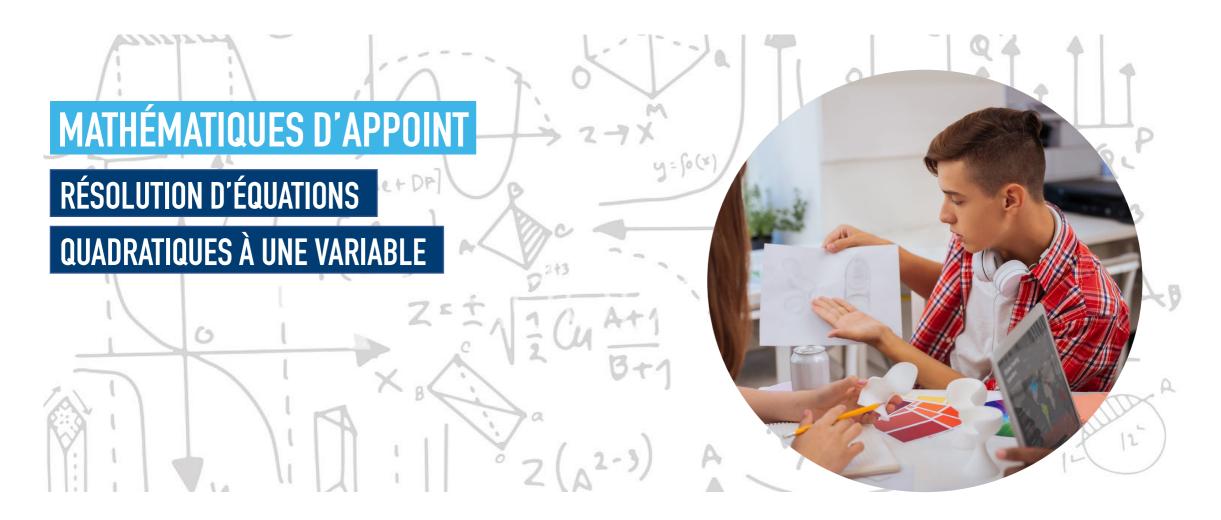
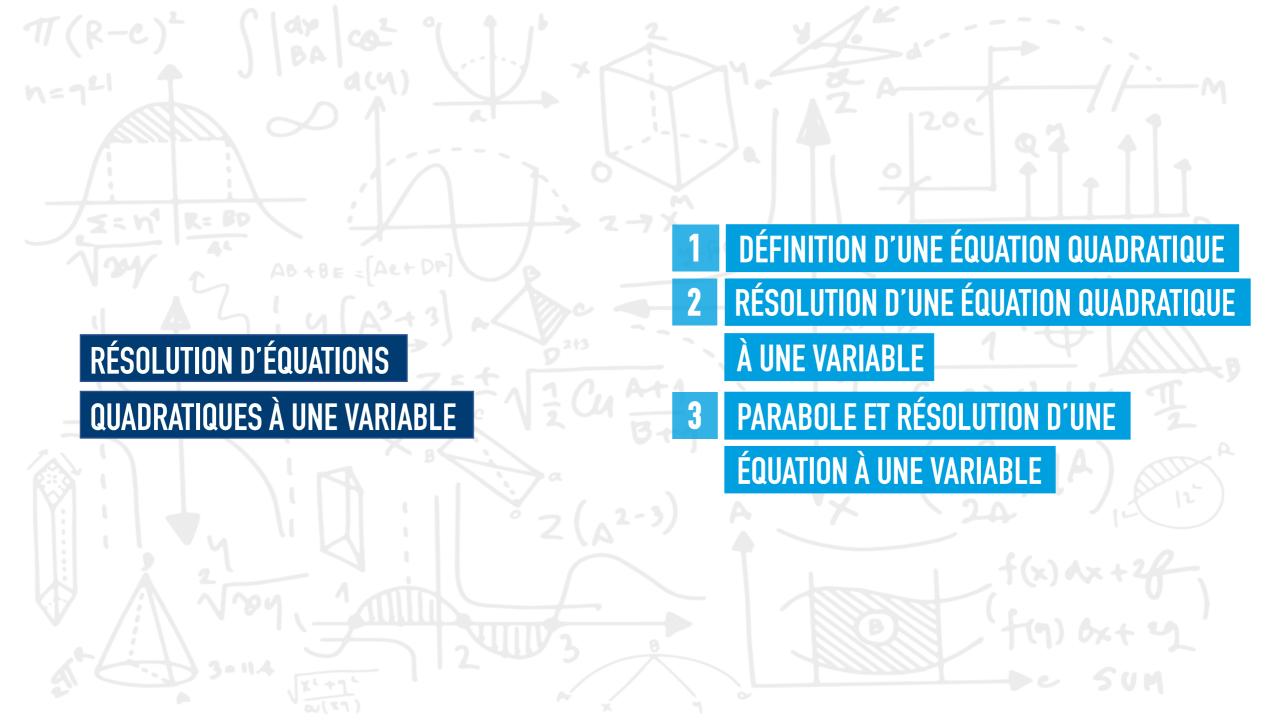
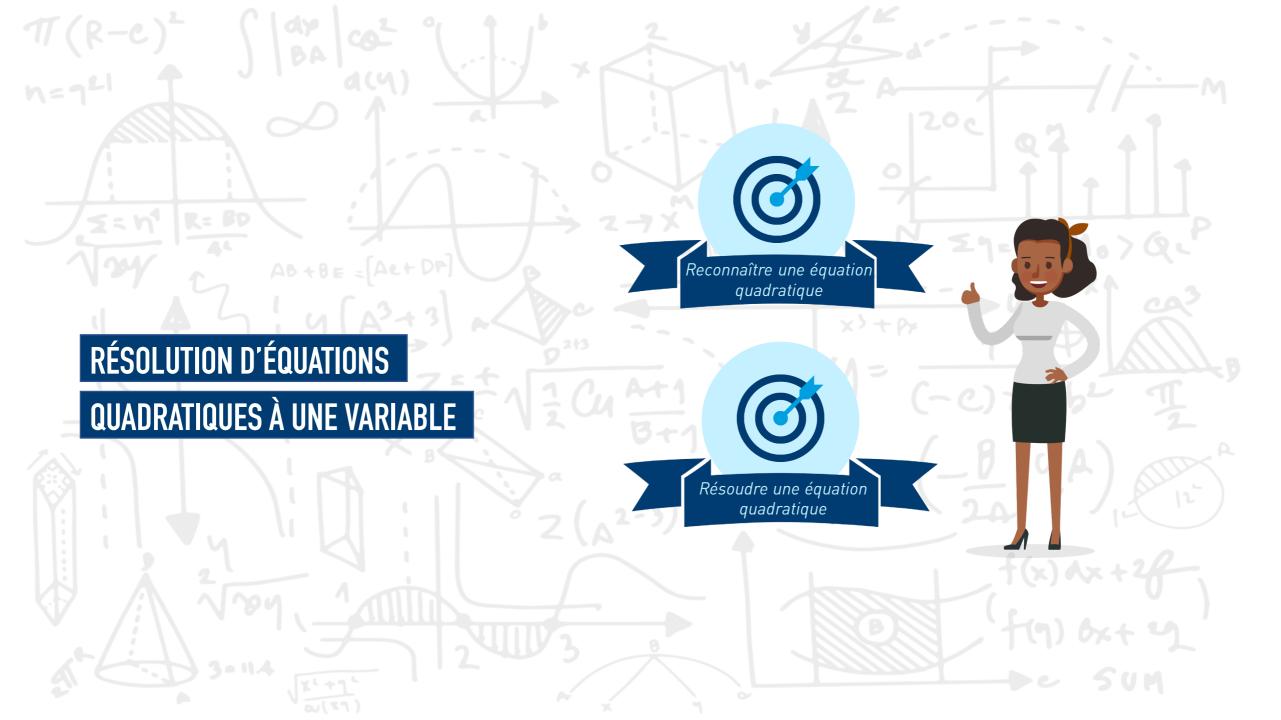
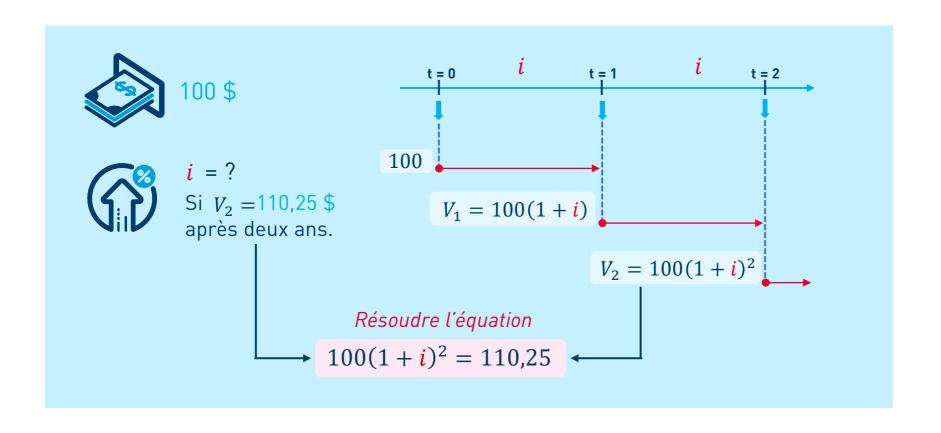
HEC MONTREAL

DÉPARTEMENT DE SCIENCES DE LA DÉCISION FATIHA KACHER – Maître d'enseignement CENTRE D'AIDE EN MATHÉMATIQUES ET STATISTIQUE MICHEL KEOULA – Coordonnateur

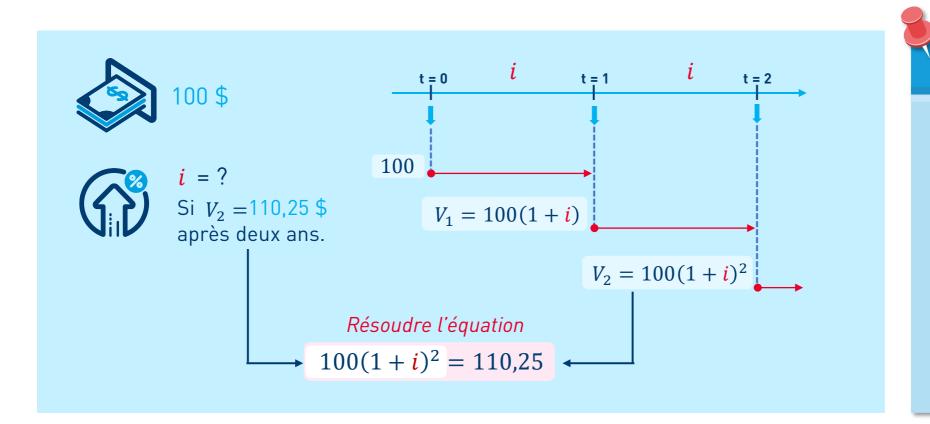








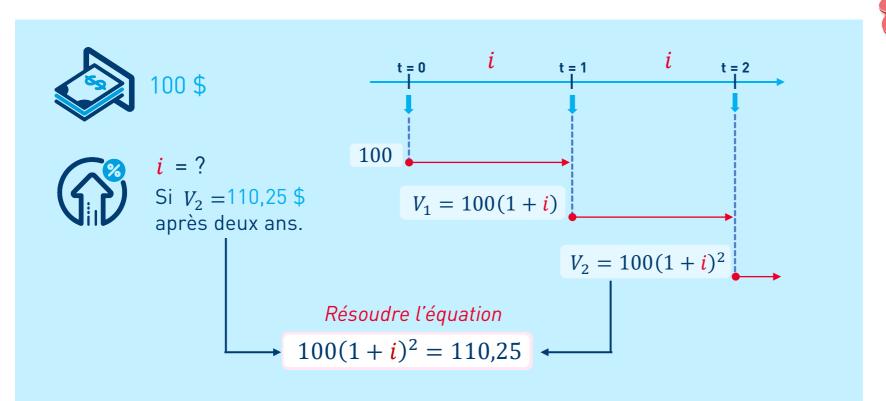
DÉFINITION D'UNE ÉQUATION QUADRATIQUE À UNE VARIABLE EXEMPLE INTRODUCTIF

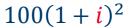


polynôme à une variable de **degré deux**

 $100(1+i)^2$

DÉFINITION D'UNE ÉQUATION QUADRATIQUE À UNE VARIABLE EXEMPLE INTRODUCTIF





polynôme à une variable de **degré deux**

$$100(1+i)^2 = 110,25$$

équation quadratique à une variable

DÉFINITION

L'équation quadratique à une variable est une équation à une seule variable qu'on peut présenter sous la forme

$$ax^2 + bx + c = 0$$

où x est la variable (l'inconnue), $a, b, c \in \mathbb{R}$ et $a \neq 0$.

$$100(1+i)^2 = 110,25 \Leftrightarrow 100(i^2+2i+1) = 110,25$$

$$\Leftrightarrow 100i^2 + 200i + 100 = 110,25$$

$$\Leftrightarrow 100i^2 + 200i + 100 - 110,25 = 0$$

Développement du trinôme

Distributivité

Soustraction de 110,25 aux deux membres

$$\bullet \quad a = 100$$

$$\Leftrightarrow 100i^2 + 200i - 10,25 = 0$$
 • $b = 200$

•
$$c = -10,25$$

$$ax^2 + bx + c = 0, a \neq 0$$

Ces équations sont quadratiques :

$$x^{2} - 1 = 2x^{2} + 2x + 1 \Leftrightarrow -x^{2} - 2x - 2 = 0$$

$$\frac{x+1}{2} = \frac{x^2 - 2x}{3} \qquad \Leftrightarrow 2x^2 - 3x - 5 = 0$$

$$\Leftrightarrow 2x^2 - 3x - 5 = 0$$

$$a = -\sqrt{2}$$

$$-\sqrt{2}x^2 - \frac{1}{2}x + 1 = 0$$

$$b = -\frac{1}{2}$$

$$c = 1$$

Ces équations **sont quadratiques** :

$$x^{2} - 1 = 2x^{2} + 2x + 1 \Leftrightarrow -x^{2} - 2x - 2 = 0$$

$$\frac{x+1}{2} = \frac{x^2 - 2x}{3} \iff 2x^2 - 3x - 5 = 0$$

$$\Leftrightarrow 2x^2 - 3x - 5 = 0$$

$$a = -\sqrt{2}$$

$$-\sqrt{2}x^{2} - \frac{1}{2}x + 1 = 0$$

$$b = -\frac{1}{2}$$

$$c = 1$$

$$x^{2} + 2x + 3 = x^{2} + 3x + 5$$

Ces équations **sont non-quadratiques** :

$$x^2 + \sqrt{x} + 1 = 0$$

$$\frac{x}{x^2+1} = x+1$$

$$x^2 + 2x + 3 = x^2 + 3x + 5$$

Ces équations **sont quadratiques** :

$$x^{2} - 1 = 2x^{2} + 2x + 1 \Leftrightarrow -x^{2} - 2x - 2 = 0$$

$$\frac{x+1}{2} = \frac{x^2 - 2x}{3} \qquad \Leftrightarrow 2x^2 - 3x - 5 = 0$$

$$\Leftrightarrow 2x^2 - 3x - 5 = 0$$

$$a = -\sqrt{2}$$

$$-\sqrt{2}x^{2} - \frac{1}{2}x + 1 = 0$$

$$b = -\frac{1}{2}$$

$$c = 1$$

$$x^{2} + 2x + 3 = x^{2} + 3x + 5 \Leftrightarrow x + 2 = 0 \quad (a = 0)$$

Ces équations **sont non-quadratiques** :

$$x^2 + \sqrt{x} + 1 = 0$$
 x est sous un radical

$$x^2 + 2x + 3 = x^2 + 3x + 5 \Leftrightarrow x + 2 = 0 \quad (a = 0)$$

À l'aide de la formule quadratique

Soit l'équation quadratique $ax^2 + bx + c = 0$

Discriminant

$$\Delta = b^2 - 4ac$$

$$\Delta < 0$$

L'équation n'admet aucune solution réelle.

$$\Delta = 0$$

L'équation admet la solution réelle double :

$$x_0 = -\frac{b}{2a}$$

$$\Delta > 0$$

L'équation admet deux solutions réelles :

$$x_1 = \frac{-b - \sqrt{\Delta}}{2a} \quad \text{et } x_2 = \frac{-b + \sqrt{\Delta}}{2a}$$

Exemple:

À quel taux d'intérêt *i* avez-vous investi si vous avez accumulé 110,25 \$ au bout de 2 ans ?

$$100(1+\mathbf{i})^2 = 110,25$$

$$100(1+i)^{2} = 110,25 \Leftrightarrow 100i^{2} + 200i - 10,25 = 0 \Rightarrow b = 200$$

$$\Delta = b^{2} - 4ac$$

$$= 200^{2} - 4(100)(-10,25) = 44100$$

$$\Delta = 44100 > 0, \quad \sqrt{\Delta} = 210$$

L'équation admet deux solutions réelles :

$$i_1 = \frac{-b - \sqrt{\Delta}}{2a}$$

$$= \frac{-200 - \sqrt{44100}}{2(100)}$$

$$i_1 = -2,05$$

et

$$i_2 = \frac{-b + \sqrt{\Delta}}{2a}$$

$$= \frac{-200 + \sqrt{44100}}{2(100)}$$

$$i_2 = 0.05$$

Exemple:

À quel taux d'intérêt *i* avez-vous investi si vous avez accumulé 110,25 \$ au bout de 2 ans ?

$$100(1+\mathbf{i})^2 = 110,25$$

$$100(1+i)^{2} = 110,25 \Leftrightarrow 100i^{2} + 200i - 10,25 = 0 \qquad b = 200$$

$$\Delta = b^{2} - 4ac$$

$$= 200^{2} - 4(100)(-10,25) = 44100 \qquad \Delta = 44100 > 0, \qquad \sqrt{\Delta} = 210$$

L'équation admet deux solutions réelles :

$$i_1 = -2,05$$

et

$$i_2 = 0.05$$

Exemple:

À quel taux d'intérêt *i* avez-vous investi si vous avez accumulé 110,25 \$ au bout de 2 ans ?

$$100(1+i)^2 = 110,25$$

$$100(1+i)^{2} = 110,25 \Leftrightarrow 100i^{2} + 200i - 10,25 = 0 \Rightarrow b = 200$$

$$\Delta = b^{2} - 4ac$$

$$= 200^{2} - 4(100)(-10,25) = 44100$$

$$\Delta = 44100 > 0, \quad \sqrt{\Delta} = 210$$

L'équation admet deux solutions réelles :

$$i_1 = -2,05$$

et

$$i_2 = 0,05$$

Le taux d'intérêt composé sur votre placement est *i* = 5%

 $S = \{0,05\}$

Exemple:

À quel taux d'intérêt \boldsymbol{i} avez-vous investi si vous avez accumulé 110,25 \$ au bout de 2 ans ?

$$100(1+i)^2 = 110,25$$

Par application d'une racine carrée

Exemple:

À quel taux d'intérêt *i* avez-vous investi si vous avez accumulé 110,25 \$ au bout de 2 ans ?

$$100(1+\mathbf{i})^2 = 110,25$$

Par application d'une racine carrée

Exemple:

À quel taux d'intérêt *i* avez-vous investi si vous avez accumulé 110,25 \$ au bout de 2 ans ?

$$100(1+\mathbf{i})^2 = 110,25$$

$$100(1+i)^2 = 110,25$$

$$100(1+i)^2 = 110,25 \qquad \Leftrightarrow (1+i)^2 = \frac{110,25}{100}$$

$$\Leftrightarrow \sqrt{(1+i)^2} = \sqrt{\frac{110,25}{100}}$$

$$\Leftrightarrow |1 + \mathbf{i}| = 1.05 \quad \Leftrightarrow 1 + \mathbf{i} = \pm 1.05$$

Propriétés des radicaux

$$x^{2} = A \Leftrightarrow \sqrt{x^{2}} = \sqrt{A}, \text{ où } A \ge 0$$
$$\Leftrightarrow |x| = \sqrt{A}$$
$$\Leftrightarrow x = \pm \sqrt{A}$$

Par application d'une racine carrée

Exemple:

À quel taux d'intérêt *i* avez-vous investi si vous avez accumulé 110,25 \$ au bout de 2 ans ?

$$100(1+\mathbf{i})^2 = 110,25$$

$$100(1+\mathbf{i})^2 = 110,25$$

$$100(1+i)^2 = 110,25 \qquad \Leftrightarrow (1+i)^2 = \frac{110,25}{100}$$

$$\Leftrightarrow \sqrt{(1+i)^2} = \sqrt{\frac{110,25}{100}}$$

$$\Leftrightarrow |1 + i| = 1,05 \quad \Leftrightarrow 1 + i = \pm 1,05$$

$$\Leftrightarrow 1 + i = \pm 1,05$$

$$i_1 = -1,05$$
 $1 = -2,05$ À rejeter

$$i_2 = 1.05 - 1 = 0.05$$

Le taux d'intérêt composé sur votre placement est i = 5%

$$S = \{0,05\}$$

Par application d'une racine carrée

Exemple: Résoudre l'équation suivante :

$$x^2 + 4 = 0$$

$$x^2 + 4 = 0 \Leftrightarrow x^2 = -4$$

 $x^2 + 4 = 0 \Leftrightarrow x^2 = -4$ Contradiction, car $\forall x \in \mathbb{R}, x^2 \ge 0$ ------

L'équation n'admet pas de solutions réelles!

Vérification par la formule quadratique

$$a = 1$$
 $x^2 + 4 = 0$
 $b = 0$
 $c = 4$
 $\Delta = b^2 - 4ac = -16 < 0$

$$\Delta = \mathbf{b}^2 - 4a\mathbf{c} = -16 < 0$$

Par application d'une racine carrée

Exemple: Résoudre l'équation suivante :

$$x^2 + 4 = 0$$

$$x^2 + 4 = 0 \Leftrightarrow x^2 = -4$$

 $x^2 + 4 = 0 \Leftrightarrow x^2 = -4$ Contradiction, car $\forall x \in \mathbb{R}, x^2 \ge 0$ ------

 $x^2 + B^2 = 0, B \neq 0$ n'admet aucune solution dans \mathbb{R} .

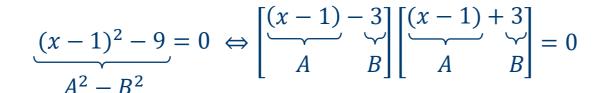
$$a = 1$$

 $a = 1$
 $b = 0$
 $c = 4$
 $\Delta = b^2 - 4ac = -16 < 0$

$$\Delta = \mathbf{b}^2 - 4a\mathbf{c} = -16 < 0$$

Par factorisation (différence de carrés)

Exemple: Résoudre l'équation suivante : $(x-1)^2 - 9 = 0$



$$\Leftrightarrow (x-4)(x+2) = 0$$

$$\Leftrightarrow x - 4 = 0$$
 (ce qui correspond à $x = 4$)

ou
$$x + 2 = 0$$
 (ce qui correspond à $x = -2$).

Différence de carrés

$$A^2 - B^2 = (A - B)(A + B)$$

Produit nul

$$AB = 0 \Leftrightarrow A = 0 \text{ ou } B = 0$$

$$S = \{-2, 4\}$$

Par factorisation

Exemple: Résoudre l'équation suivante :

$$8x^2 + 4x = 0$$

Mise en évidence simple

$$ab + ac = a(b+c)$$

Produit nul

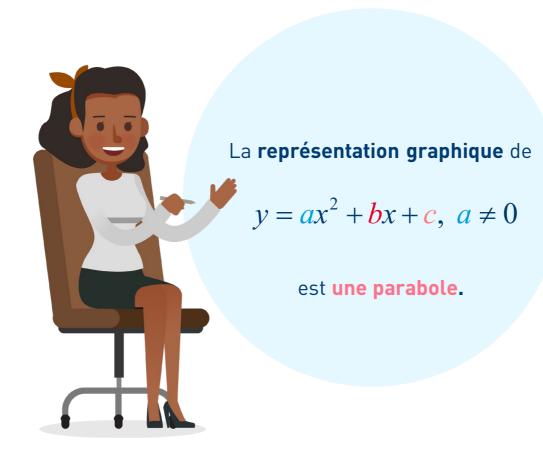
$$AB = 0 \Leftrightarrow A = 0 \text{ ou } B = 0$$

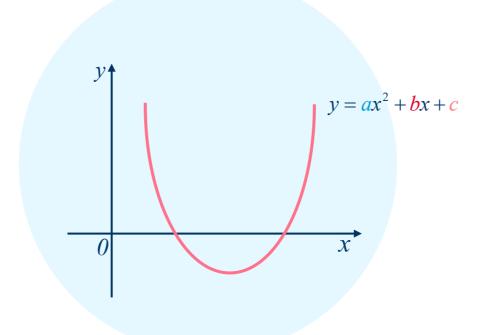
$$8x^2 + 4x = 0 \Leftrightarrow 4x(2x+1) = 0$$

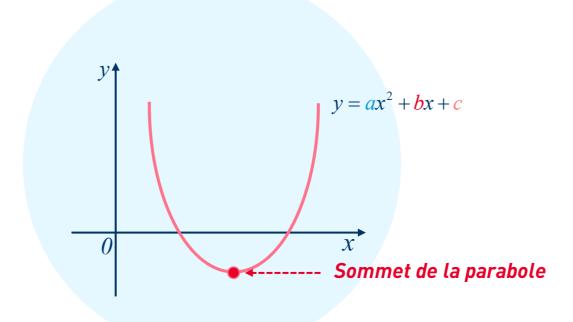
$$\Leftrightarrow 4x = 0$$
 (ce qui correspond à $x = 0$)

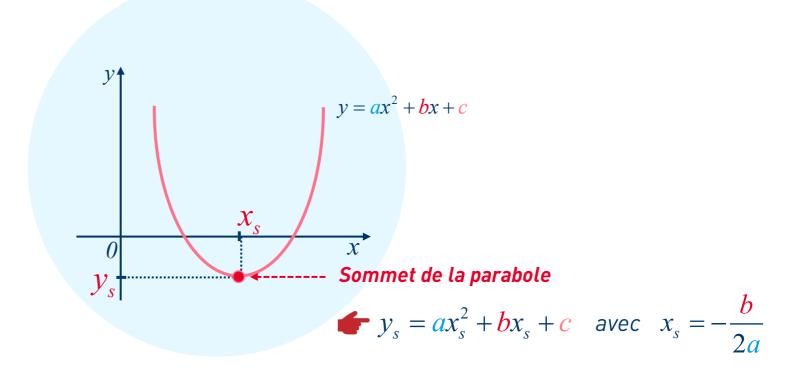
ou
$$2x + 1 = 0$$
 (ce qui correspond à $x = -\frac{1}{2}$).

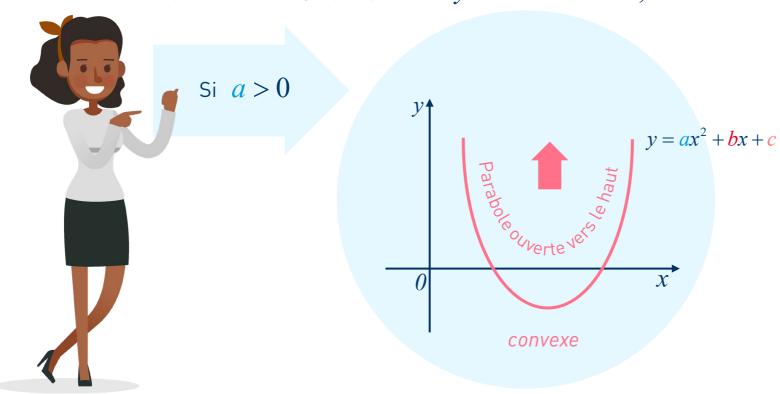
$$S = \left\{-\frac{1}{2}, 0\right\}$$

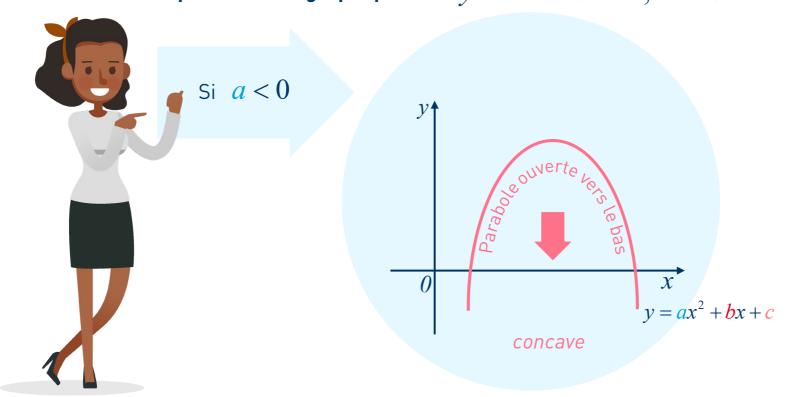


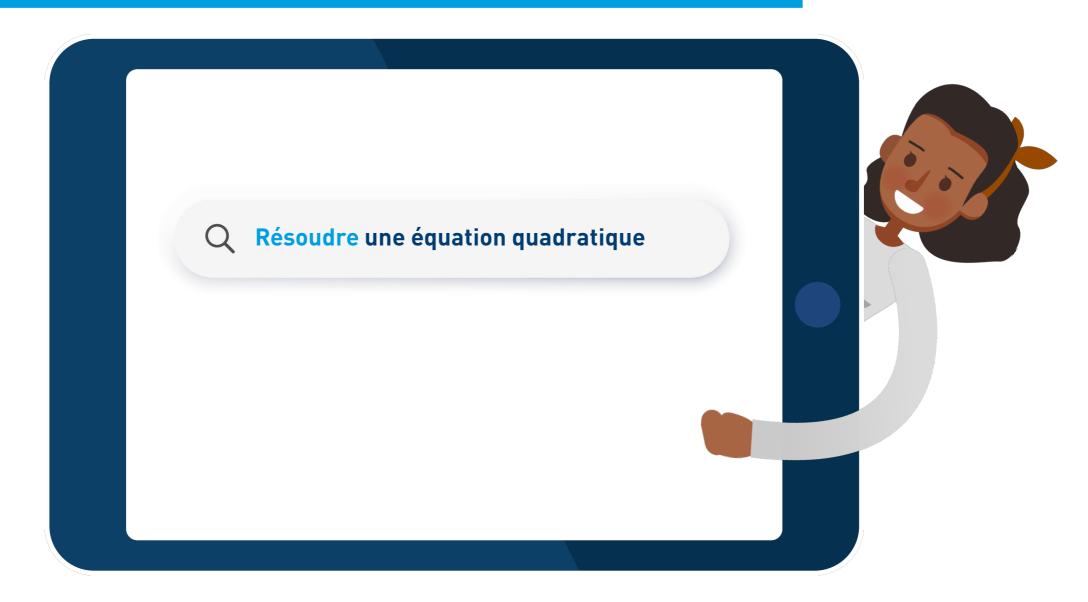


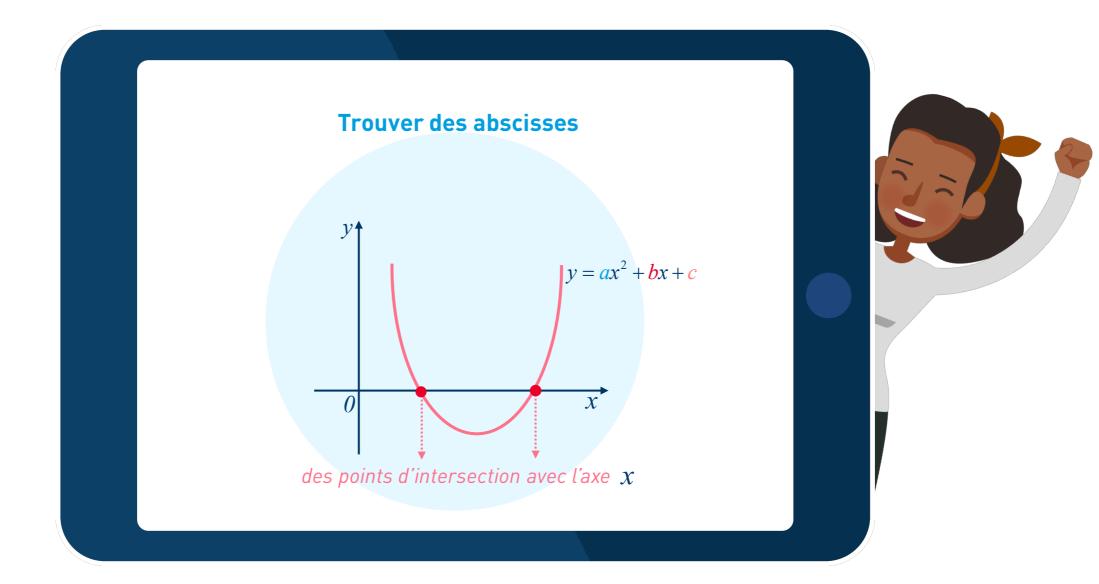












Traçons la parabole!

Exemple:
$$y = x^2 + 4$$

$$y = x^2 + 4$$

$$a = 1$$

$$b = 0$$

$$c = 4$$

Traçons la parabole!

$$y = x^2 + 4$$

Le **sommet**

$$de \ la \ parabole:$$

$$y_s = x_s^2 + bx_s + c$$

Traçons la parabole!

Exemple:
$$y = x^2 + 4$$

$$x_s = -\frac{b}{2a} = -\frac{0}{2} = 0$$

Le sommet
$$x_s = -\frac{b}{2a} = -\frac{0}{2} = \boxed{0}$$
 de la parabole :
$$y_s = x_s^2 + bx_s + c = 0^2 + 0 + 4 = \boxed{4}$$

Exemple:
$$y = x^2 + 4$$

$$y = x^2 + 4$$
 $b = 0$ $c = 4$ $a = 1$ $a = 1$ $a = 1 > 0$ $b = 0$ $c = 4$

Le sommet
$$x_s = -\frac{b}{2a} = -\frac{0}{2} = \boxed{0}$$
 de la parabole :
$$y_s = x_s^2 + bx_s + c = 0^2 + 0 + 4 = \boxed{4}$$

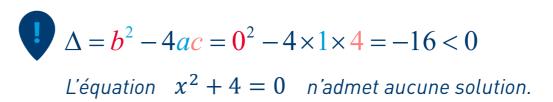
$$a = 1 > 0 \rightarrow La$$
 parabole est ouverte vers le hau

Exemple:
$$y = x^2 + 4$$

$$y = x^2 + 4$$
 $\Rightarrow b = 0$ $\Rightarrow a = 1 > 0 \Rightarrow b = 0$ $\Rightarrow c = 4$

Le sommet
$$x_s = -\frac{b}{2a} = -\frac{0}{2} = \boxed{0}$$

$$y_s = x_s^2 + bx_s + c = 0^2 + 0 + 4 = \boxed{4}$$



Traçons la parabole!

$$y = x^2 + 4$$

$$a=1$$

$$y=x^2+4$$
 $b=0$

$$c=4$$
 $c=4$
 $b=1$
 $c=4$

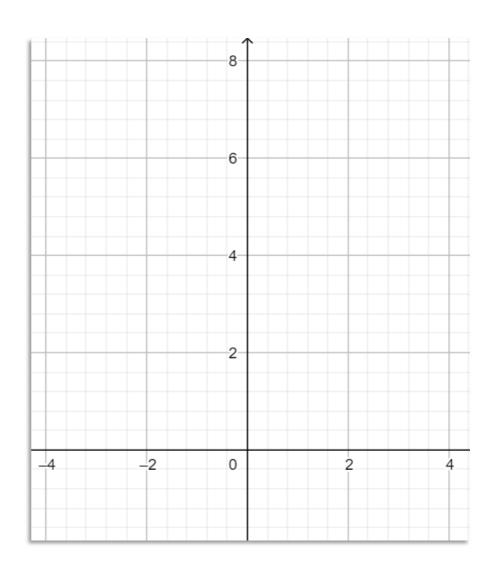
Le sommet
$$x_s = -\frac{b}{2a} = -\frac{0}{2} = 0$$
 de la parabole :
$$y_s = x_s^2 + bx_s + c = 0^2$$

$$y_s = x_s^2 + bx_s + c = 0^2 + 0 + 4 = 4$$

L'équation $x^2 + 4 = 0$ n'admet aucune solution.

La parabole ne coupe pas l'axe des X.

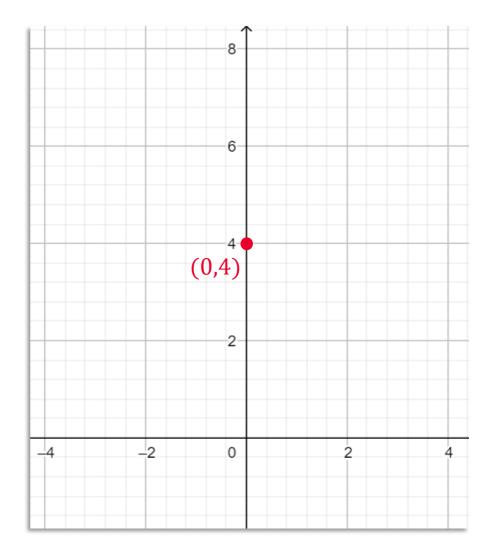
$$y = x^2 + 4$$



Traçons la parabole!

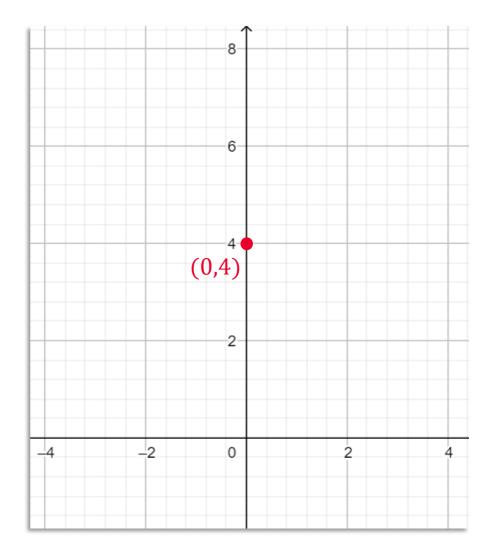
Exemple:
$$y = x^2 + 4$$

Le **sommet** de la parabole : $x_s = 0$ $y_s = 4$



Exemple:
$$y = x^2 + 4$$

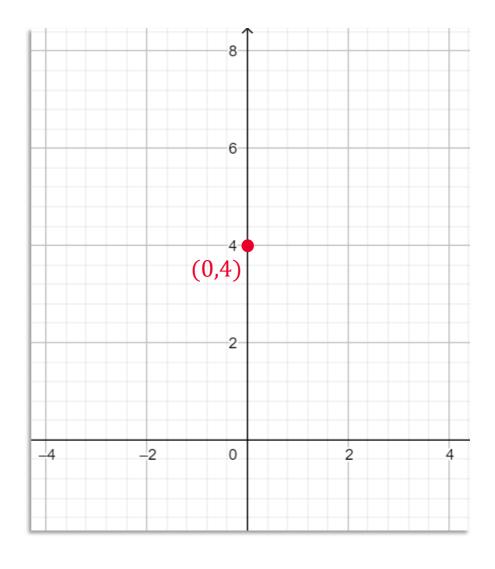
- Le **sommet** de la parabole : $x_s = 0$ $y_s = 4$
- $\Delta < 0$ \longrightarrow La parabole ne coupe pas l'axe des x.



Exemple:
$$y = x^2 + 4$$

- Le **sommet** de la parabole : $x_s = 0$ $y_s = 4$
- $\Delta < 0$ \longrightarrow La parabole ne coupe pas l'axe des x.
 - Deux autres points de la parabole :

x	$y_1 = x^2 + 4$



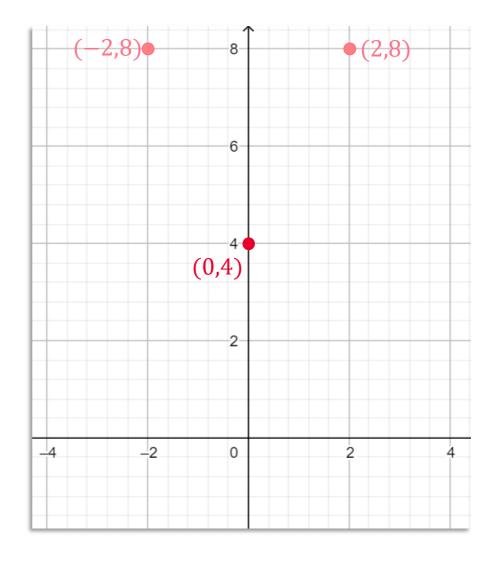
Traçons la parabole!

Exemple:
$$y = x^2 + 4$$

Le **sommet** de la parabole : $x_s = 0$ $y_s = 4$

lacksquare $\Delta < 0$ \longrightarrow La parabole ne coupe pas l'axe des x.

X	$y_1 = x^2 + 4$
-2	8
2	8



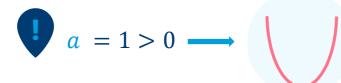
Traçons la parabole!

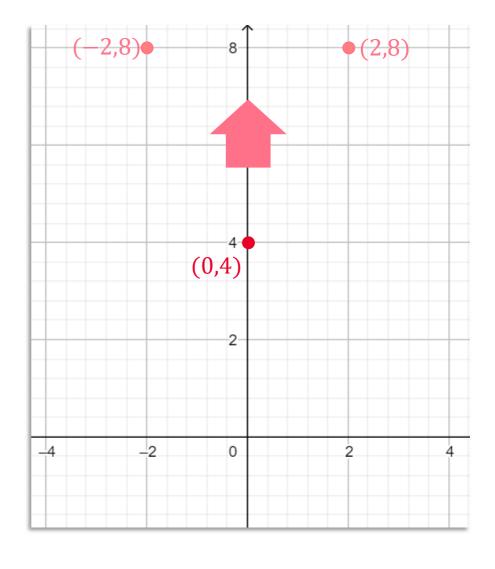
Exemple:
$$y = x^2 + 4$$

Le **sommet** de la parabole : $x_s = 0$ $y_s = 4$

lacksquare $\Delta < 0$ \longrightarrow La parabole ne coupe pas l'axe des x.

x	$y_1 = x^2 + 4$
-2	8
2	8





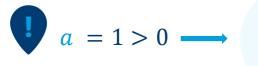
Traçons la parabole!

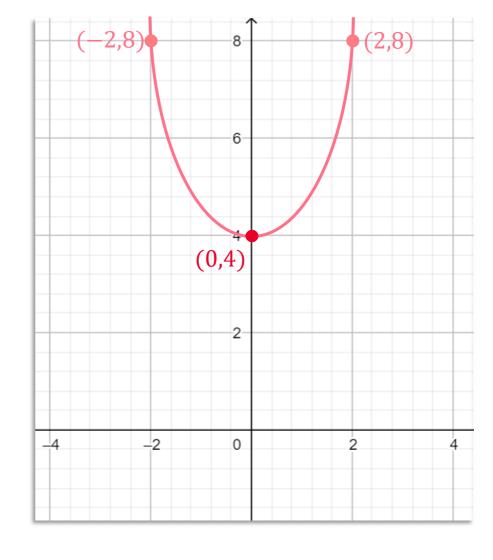
Exemple:
$$y = x^2 + 4$$

Le sommet de la parabole : $x_s = 0$ $y_s = 4$

lacksquare $\Delta < 0$ \longrightarrow La parabole ne coupe pas l'axe des x.

x	$y_1 = x^2 + 4$
-2	8
2	8





Exemple:

Exemple:
$$y = -x^2 + 2x - 1$$

$$y = -x^{2} + 2x - 1$$

$$a = -1$$

$$b = 2$$

$$c = -1$$

Exemple:
$$y = -x^2 + 2x - 1$$

$$y = -x^2 + 2x - 1$$

Le **sommet**
$$x_s = -\frac{b}{2a}$$
 de la parabole : $y_s = ax_s^2 + bx_s + c$

$$y = -x^{2} + 2x - 1$$

$$a = -1$$

$$b = 2$$

$$c = -1$$

Exemple:
$$y = -x^2 + 2x - 1$$

Le sommet
$$x_s = -\frac{b}{2a} = -\frac{2}{-2} = 1$$
 $y_s = ax_s^2 + bx_s + c = -1^2 + 2(1) - 1 = 0$

$$y = -x^2 + 2x - 1$$

$$a = -2$$

$$b = 2$$

$$c = -1$$

Exemple:
$$y = -x^2 + 2x - 1$$

Le sommet
$$x_s = -\frac{b}{2a} = -\frac{2}{-2} = 1$$
 $y_s = ax_s^2 + bx_s + c = -1^2 + 2(1) - 1 = 0$

$$y = -x^{2} + 2x - 1$$

$$b = 2$$

$$c = -1$$

$$0 \Rightarrow La parabole est ouverte vers le bas.$$

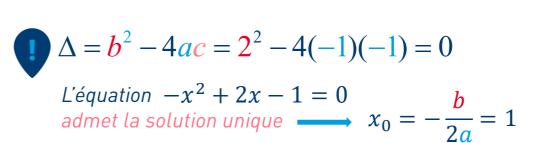
$$a = -1 < 0 \rightarrow La$$
 parabole est ouverte vers le bas

Exemple:
$$y = -x^2 + 2x - 1$$

Le sommet
$$x_s = -\frac{b}{2a} = -\frac{2}{-2} = 1$$

 $y_s = ax_s^2 + bx_s + c = -1^2 + 2(1) - 1 = 0$

$$a = -1 < 0 \rightarrow La$$
 parabole est ouverte vers le bas



Exemple:
$$y = -x^2 + 2x - 1$$

$$y = -x^{2} + 2x - 1$$

$$b = 2$$

$$c = -1$$

$$a = -1$$

$$a = -1 < 0 \Rightarrow \text{La parabole est ouverte vers le bas.}$$

$$\frac{x_s}{2a} - \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} = \frac{1}{2} + \frac{1}{2} = \frac{1}{2} + \frac{1}{2} = \frac{1}{2} = \frac{1}{2} + \frac{1}{2} = \frac$$

$$y_s = ax_s^2 + bx_s + c = -1^2 + 2(1) - 1 = 0$$

$$a = -1 < 0 \Rightarrow$$
 La parabole est ouverte vers le bas

Traçons la parabole!

Exemple:
$$y = -x^2 + 2x - 1$$

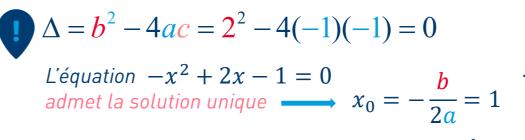
$$y = -x^{2} + 2x - 1$$

$$b = 2$$

$$c = -1$$

$$0 \Rightarrow \text{La parabole est ouverte vers le bas.}$$

Le sommet
$$x_s = -\frac{b}{2a} = -\frac{2}{-2} = 1$$
 $y_s = ax_s^2 + bx_s + c = -1^2 + 2(1) - 1 = 0$



La parabole touche l'axe des abscisses en x = 1sans le couper.

Traçons la parabole!

Exemple:
$$y = -x^2 + 2x - 1$$

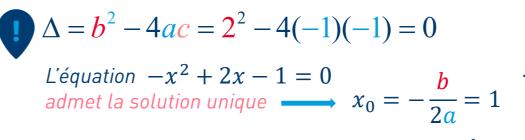
$$y = -x^{2} + 2x - 1$$

$$b = 2$$

$$c = -1$$

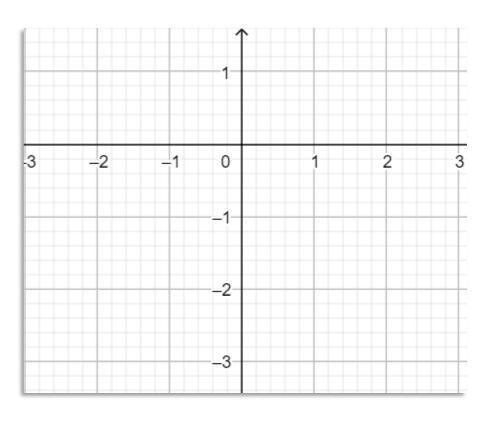
$$0 \Rightarrow \text{La parabole est ouverte vers le bas.}$$

Le sommet
$$x_s = -\frac{b}{2a} = -\frac{2}{-2} = 1$$
 $y_s = ax_s^2 + bx_s + c = -1^2 + 2(1) - 1 = 0$



La parabole touche l'axe des abscisses en x = 1sans le couper.

Exemple:
$$y = -x^2 + 2x - 1$$



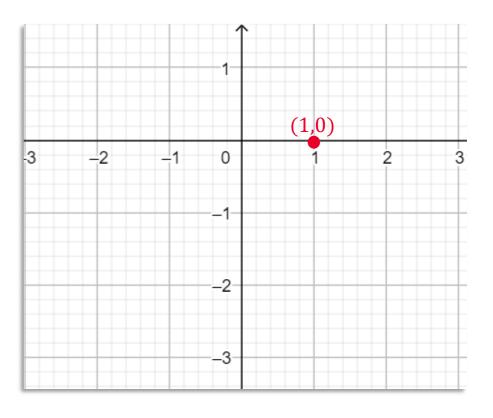
Traçons la parabole!

Exemple:
$$y = -x^2 + 2x - 1$$

Le **sommet** de la parabole : $x_s = 1$

$$x_s = 1$$

$$y_s = 0$$



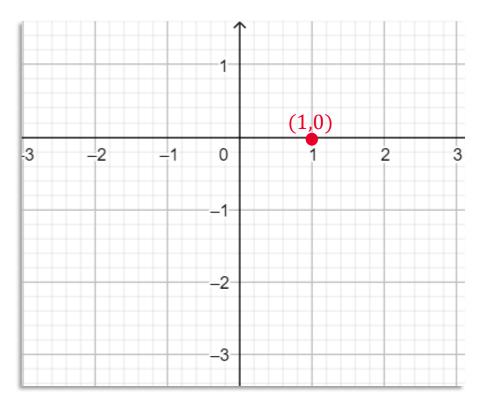
Traçons la parabole!

Exemple:
$$y = -x^2 + 2x - 1$$

Le **sommet** de la parabole : $x_s = 1$

$$y_s = 0$$

 $\Delta=0$ — La parabole touche l'axe des ${\mathcal X}$ en un seul point (au sommet).



Traçons la parabole!

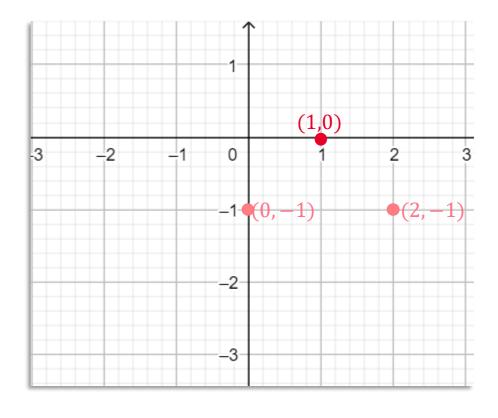
Exemple:
$$y = -x^2 + 2x - 1$$

Le **sommet** de la parabole : $x_s = 1$

$$y_s = 0$$

 $\Delta = 0$ \longrightarrow La parabole touche l'axe des $\mathcal X$ en un seul point (au sommet).

x	$y_1 = -x^2 + 2x - 1$
0	-1
2	-1



Traçons la parabole!

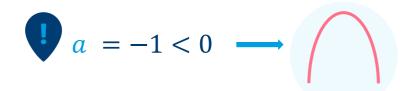
Exemple:
$$y = -x^2 + 2x - 1$$

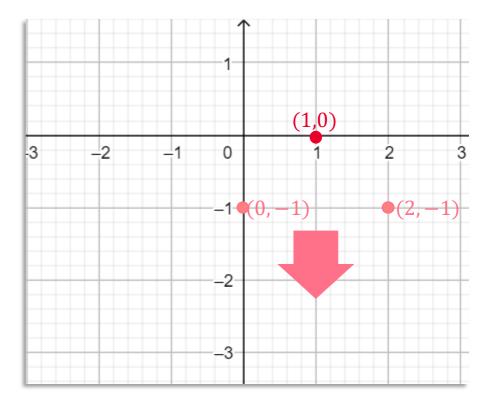
Le **sommet** de la parabole : $x_s = 1$

$$y_s = 0$$

 $\Delta = 0$ \longrightarrow La parabole touche l'axe des $\mathcal X$ en un seul point (au sommet).

x	$y_1 = -x^2 + 2x - 1$
0	-1
2	-1





Traçons la parabole!

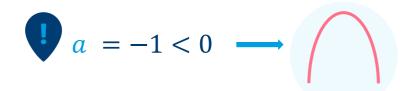
Exemple:
$$y = -x^2 + 2x - 1$$

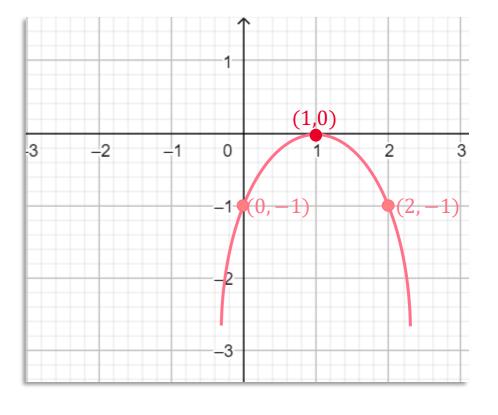
Le **sommet** de la parabole : $x_s = 1$

$$y_s = 0$$

 $\Delta = 0$ \longrightarrow La parabole touche l'axe des $\mathcal X$ en un seul point (au sommet).

x	$y_1 = -x^2 + 2x - 1$
0	-1
2	-1

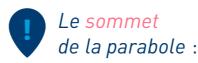




Exemple:
$$y = -x^2 - 2x + 3$$

Exemple:
$$y =$$

Exemple:
$$y = -x^2 - 2x + 3$$



Le sommet
$$x_s = -\frac{b}{2a}$$
 de la parabole : $y_s = ax_s^2 + bx_s + c$

$$y = -x^2 - 2x + 3$$

$$a = -1$$

$$b = -2$$

$$c = 3$$

Exemple:
$$y = -x^2 - 2x + 3$$

Le sommet
$$x_s = -\frac{b}{2a} = -\frac{-2}{-2} = \boxed{-1}$$
 $y_s = ax_s^2 + bx_s + c = -(-1)^2 - 2(-1) + 3 = \boxed{4}$

$$y = -x^2 - 2x + 3$$

$$a = -1$$

$$b = -2$$

$$c = 3$$

Exemple:
$$y = -x^2 - 2x + 3$$

Le sommet
$$x_s = -\frac{b}{2a} = -\frac{-2}{-2} = \boxed{-1}$$
 de la parabole : $y_s = ax_s^2 + bx_s + c = -(-1)^2 - 2(-1) + 3 = \boxed{4}$

$$y = -x^2 - 2x + 3$$

$$a = -1$$

$$b = -2$$

$$c = 3$$

$$a = -1 < 0 \Rightarrow \text{La parabole est ouverte vers le bas.}$$

Traçons la parabole!

$$y = -x^2 - 2x + 3$$

$$y = -x^2 - 2x + 3$$

$$a = -1$$

$$b = -2$$

$$c = 3$$

$$a = -1 < 0 \Rightarrow \text{La parabole est ouverte vers le bas.}$$

Le sommet
$$x_s = -\frac{b}{2a} = -\frac{-2}{-2} = \boxed{1}$$
 de la parabole : $y_s = ax_s^2 + bx_s + c = -(-1)^2 - 2(-1) + 3 = \boxed{4}$

$$a = -1 < 0 \Rightarrow$$
 La parabole est ouverte vers le bas

 \rightarrow L'équation $-x^2 - 2x + 3 = 0$ admet deux solutions:

$$x_1 = \frac{-b - \sqrt{\Delta}}{2a} = 1 \text{ et } x_2 = \frac{-b + \sqrt{\Delta}}{2a} = -3$$

Traçons la parabole!

$$y = -x^2 - 2x + 3$$

$$a = -1$$

Le sommet
$$x_s = -\frac{b}{2a} = -\frac{-2}{-2} = \boxed{-1}$$
 de la parabole :

$$y_s = ax_s^2 + bx_s + c = -(-1)^2 - 2(-1) + 3 = 4$$

$$y = -x^2 - 2x + 3$$

$$b = -2$$

$$c = 3$$

$$b = -1$$

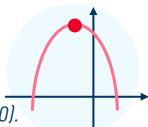
$$0 \Rightarrow \text{La parabole est ouverte vers le bas.}$$

$$\blacksquare$$
 $a = -1 < 0 \Rightarrow$ La parabole est ouverte vers le bas.

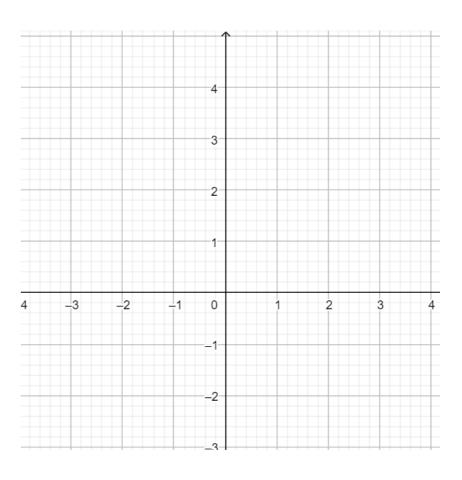
 \rightarrow L'équation $-x^2 - 2x + 3 = 0$ admet deux solutions:

$$x_1 = \frac{-b - \sqrt{\Delta}}{2a} = 1 \text{ et } x_2 = \frac{-b + \sqrt{\Delta}}{2a} = -3$$

 \rightarrow La parabole coupe l'axe des x en deux points : (-3,0) et (1,0).



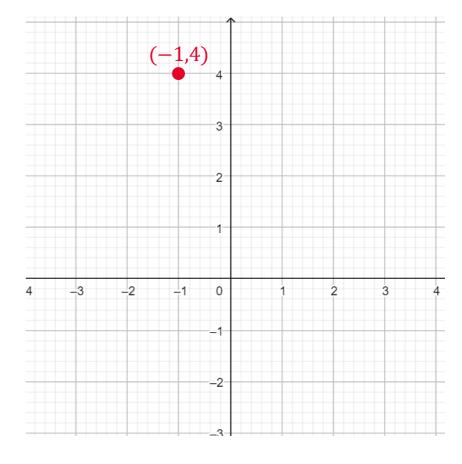
Exemple:
$$y = -x^2 - 2x + 3$$



Traçons la parabole!

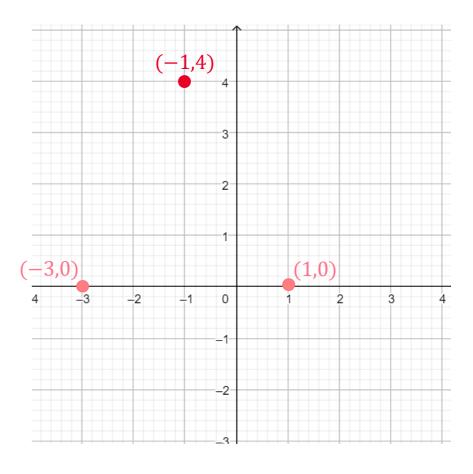
Exemple:
$$y = -x^2 - 2x + 3$$

Le sommet de la parabole : $x_s = -1$ $y_s = 4$



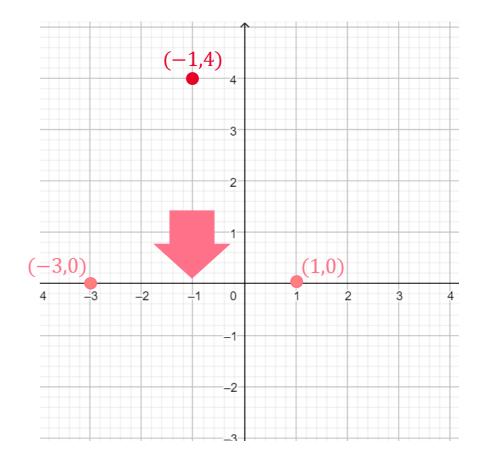
Exemple:
$$y = -x^2 - 2x + 3$$

- Le sommet de la parabole : $x_s = -1$ $y_s = 4$
- La parabole coupe l'axe des x en deux points : (-3,0) et (1,0).



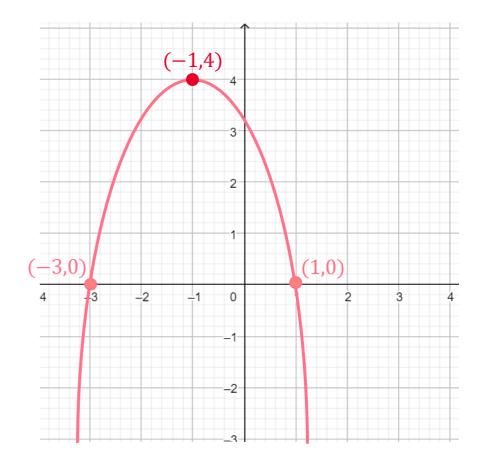
Exemple:
$$y = -x^2 - 2x + 3$$

- Le sommet de la parabole : $x_s = -1$ $y_s = 4$
- La parabole coupe l'axe des x en deux points : (-3,0) et (1,0).
- a = -1 < 0
 - → La parabole est ouverte vers le bas.



Exemple:
$$y = -x^2 - 2x + 3$$

- Le sommet de la parabole : $x_s = -1$ $y_s = 4$
- La parabole coupe l'axe des x en ces points : (-3,0) et (1,0).
- a = -1 < 0
 - → La parabole est ouverte vers le bas.



Équation quadratique à une variable : $ax^2 + bx + c = 0$, $où a, b, c \in \mathbb{R}$ et $a \neq 0$.

Équation quadratique à une variable : $ax^2 + bx + c = 0$, $où a, b, c \in \mathbb{R}$ et $a \neq 0$.

Techniques de résolution d'une équation quadratique :

Équation quadratique à une variable : $ax^2 + bx + c = 0$, $où a, b, c \in \mathbb{R}$ et $a \neq 0$.

Techniques de résolution d'une équation quadratique :

2

Résolution par la **formule quadratique** : $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$

Équation quadratique à une variable : $ax^2 + bx + c = 0$, $où a, b, c \in \mathbb{R}$ et $a \neq 0$.

Techniques de résolution d'une équation quadratique :

Résolution par la **formule quadratique** : $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$

Résolution par application de la racine carrée :

$$A^2 = B \iff A = \pm \sqrt{B}, \ o\grave{u}B \ge 0$$

Équation quadratique à une variable : $ax^2 + bx + c = 0$, $où a, b, c \in \mathbb{R}$ et $a \neq 0$.

Techniques de résolution d'une équation quadratique :

Résolution par la **formule quadratique** : $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$

Résolution par application de la racine carrée :

$$A^2 = B \iff A = \pm \sqrt{B}, \ o\grave{u}B \ge 0$$

Résolution par la factorisation

Équation quadratique à une variable : $ax^2 + bx + c = 0$, $où a, b, c \in \mathbb{R}$ et $a \neq 0$.

Techniques de résolution d'une équation quadratique :

Résolution par la **formule quadratique** : $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$

Exemple

Résolution par application de la racine carrée :

$$A^2 = B \iff A = \pm \sqrt{B}, \ o\grave{u}B \ge 0$$

Résolution par la factorisation

2

 $x^2 - 9 = 0$

Équation quadratique à une variable : $ax^2 + bx + c = 0$, $où a, b, c \in \mathbb{R}$ et $a \neq 0$.

Techniques de résolution d'une équation quadratique :

Résolution par la **formule quadratique** : $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$

Exemple

$$A^2 = B \iff A = \pm \sqrt{B}, \ o\grave{u}B \ge 0$$

Résolution par la factorisation

 $x^2 - 9 = 0$

3

$$x^2 + B^2 = 0$$
, $B \neq 0$ \longrightarrow Cette équation **n'admet aucune solution réelle** $S = \emptyset$

4 Le graphe de $y = ax^2 + bx + c$, $a \ne 0$ est une **parabole**.

4 Le graphe de $y = ax^2 + bx + c$, $a \ne 0$ est une **parabole**.

Le **sommet** de la parabole : $x_s = -\frac{b}{2a}$ et $y_s = ax_s^2 + bx_s + c$ 5

- 4 Le graphe de $y = ax^2 + bx + c$, $a \ne 0$ est une **parabole**.
- Le **sommet** de la parabole : $x_s = -\frac{b}{2a}$ et $y_s = ax_s^2 + bx_s + c$ 5

Si a > 0, alors la 6 parabole est ouverte vers le haut (convexe).

- 4 Le graphe de $y = ax^2 + bx + c$, $a \ne 0$ est une **parabole**.
- Le **sommet** de la parabole : $x_s = -\frac{b}{2a}$ et $y_s = ax_s^2 + bx_s + c$ 5

Si a > 0, alors la 6 parabole est ouverte vers le haut (convexe).

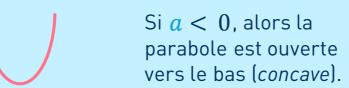
Si a < 0, alors la parabole est ouverte vers le bas (concave).

- 4 Le graphe de $y = ax^2 + bx + c$, $a \ne 0$ est une **parabole**.
- Le **sommet** de la parabole : $x_s = -\frac{b}{2a}$ et $y_s = ax_s^2 + bx_s + c$ 5
- Si a > 0, alors la 6 parabole est ouverte vers le haut (convexe).

Si $\alpha < 0$, alors la parabole est ouverte vers le bas (concave).

Si $\Delta < 0$, alors la parabole ne coupe pas l'axe des abscisses.

- 4 Le graphe de $y = ax^2 + bx + c$, $a \ne 0$ est une **parabole**.
- Le **sommet** de la parabole : $x_s = -\frac{b}{2a}$ et $y_s = ax_s^2 + bx_s + c$ 5
- Si a > 0, alors la 6 parabole est ouverte vers le haut (convexe).



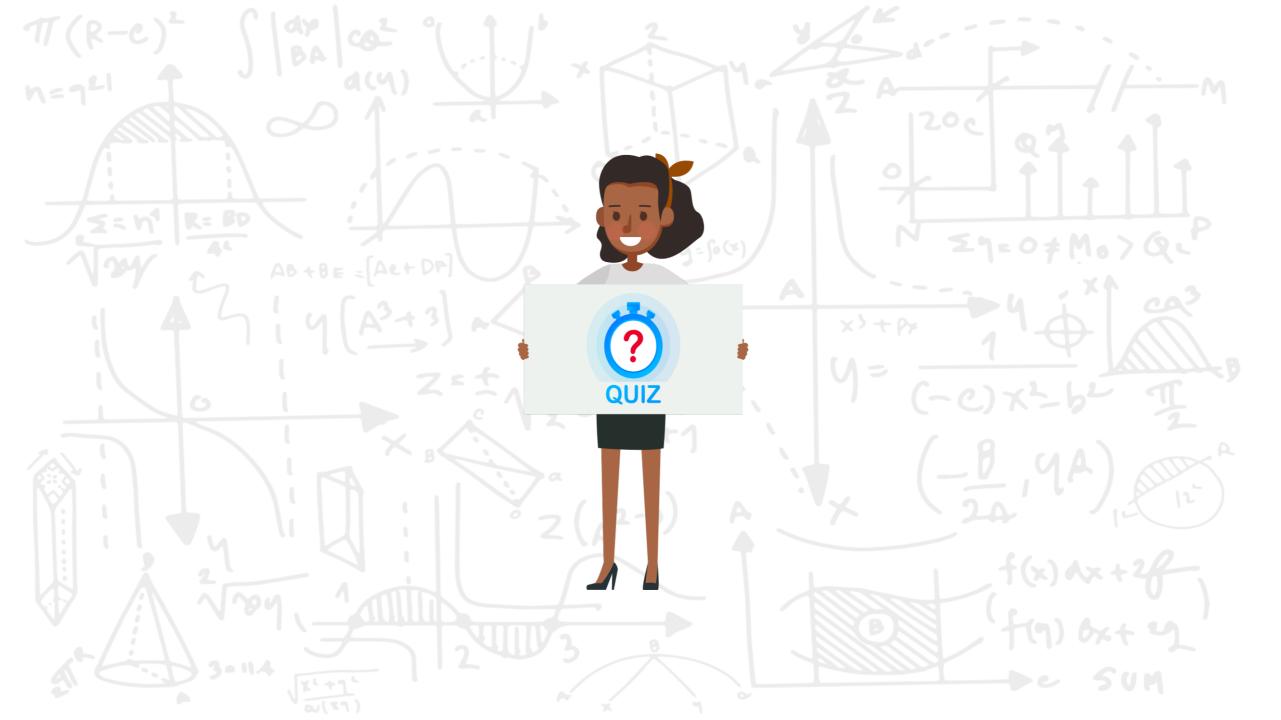
- Si $\Delta < 0$, alors la parabole ne coupe pas l'axe des abscisses.
- Si $\Delta = 0$, alors la parabole touche, sans la couper, l'axe des abscisses à son sommet.

- 4 Le graphe de $y = ax^2 + bx + c$, $a \ne 0$ est une **parabole**.
- Le **sommet** de la parabole : $x_s = -\frac{b}{2a}$ et $y_s = ax_s^2 + bx_s + c$ 5
- Si a > 0, alors la 6 parabole est ouverte vers le haut (convexe).

Si $\alpha < 0$, alors la parabole est ouverte vers le bas (concave).

- Si $\Delta < 0$, alors la parabole ne coupe pas l'axe des abscisses.
- Si $\Delta = 0$, alors la parabole touche l'axe des abscisses à son sommet, sans le couper.
 - Si $\Delta > 0$, alors la parabole coupe l'axe des abscisses en deux points.

- Michèle Gingras, Mathématique d'appoint, 5e édition, 2015, Éditeur Chenelière éducation.
- Josée Hamel, Mise à niveau Mathématique, 2e édition, 2017, Éditeur Pearson (ERPI)



HEC MONTREAL

DÉPARTEMENT DE SCIENCES DE LA DÉCISION CENTRE D'AIDE EN MATHÉMATIQUES ET STATISTIQUE 2021

Direction de l'apprentissage et de l'innovation pédagogique Service de l'audiovisuel