HEC MONTREAL

DÉPARTEMENT DE SCIENCES DE LA DÉCISION FATIHA KACHER – Maître d'enseignement CENTRE D'AIDE EN MATHÉMATIQUES ET STATISTIQUE

MICHEL KEOULA - Coordonnateur

Définition d'une inéquation quadratique

 Résolution d'une inéquation quadratique à une variable

 Parabole et résolution d'une inéquation quadratique à une variable

Exemple 1

Capacité de la salle : 100 places

Prix du billet : 15 \$ s'il vend 100 billets

Pour toute <u>augmentation</u> de 3 \$
 du prix du billet, il y aura une
 <u>diminution</u> des ventes de 4 billets.

Objectif : Revenu ≥ 2800 \$

	Revenu =	Prix du	billet ×	Demande
--	----------	---------	----------	---------

	Variable	(inconnue)
--	-----------------	------------

X: Nombre d'augmentations de 3 \$ du prix initial d'un billet

Nombre de d'augmentations	Prix d'un billet	Demande	Revenu
0	15 \$	100	15 × 100
1	15 + 3	100 - 4	(15+3)(100-4)
2	$15 + 2 \times 3$	$100-2\times4$	$(15 + 2 \times 3)(100 - 2 \times 4)$
3	$15 + \frac{3}{3} \times 3$	$100 - 3 \times 4$	$(15 + 3 \times 3)(100 - 3 \times 4)$

$$Revenu = (15 + 3x)(100 - 4x)$$

Polynôme à une variable de degré 2

Pour quelles valeurs de $x : (15 + 3x)(100 - 4x) \ge 2800$?

Inéquation quadratique à une variable

Exemple 1

Revenu = Prix du billet \times Demande

$$Revenu = (15 + 3x)(100 - 4x)$$

Variable (inconnue)

X: Nombre d'augmentations de 3 \$ du prix initial d'un billet

Pour quelles valeurs de $x : (15 + 3x)(100 - 4x) \ge 2800$?

Inéquation quadratique à une variable

Le nombre d'augmentations de $3 \$: x \ge 0$

Le prix d'un billet :
$$(15+3x) > 0$$
, car $x \ge 0$

La demande :
$$(100-4x) \ge 0 \Leftrightarrow x \le 25$$

$$\Leftrightarrow 0 \le x \le 25$$

Domaine:
$$[0,25]$$

<u>Une</u> inéquation quadratique à une variable est une inéquation qui peut s'écrire sous l'une des formes suivantes :

$$ax^{2} + bx + c \le 0$$
, $ax^{2} + bx + c \ge 0$, $ax^{2} + bx + c < 0$, $ax^{2} + bx + c > 0$

où x est la variable (l'inconnue), $a, b, c \in \mathbb{R}$ et $a \neq 0$

$$(15+3x)(100-4x) \ge 2800 \iff -12x^2 + 240x + 1500 \ge 2800$$
 Développement du produit

$$\Leftrightarrow -12x^2 + 240x + 1500 - 2800 \ge 0$$
 Soustraction de 2800 aux deux membres

$$\Rightarrow -12x^2 + 240x - 1300 \ge 0$$
 $b = 240$

riable

 $c = -1300$

Inéquation quadratique à une variable

Exemple 1 Objectif: Revenu $\geq 2800 \,\$$

Domaine: $x \in [0, 25]$

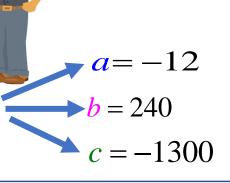
$$(15+3x)(100-4x) \ge 2800 \Leftrightarrow -12x^2 + 240x - 1300 \ge 0$$

Étape 1: Résoudre l'équation
$$-12x^2 + 240x - 1300 = 0$$

$$\Delta = b^2 - 4ac = -4800 < 0$$

<u>Étape 2</u> : **Le signe du polynôme**

$$-12x^{2} + 240x - 1300 = -12\left((x - 10)^{2} + \frac{100}{12}\right) < 0, \ \forall x \in \mathbb{R}$$



Rappel Factorisation $P = ax^2 + bx + c$, $a \ne 0$

- Si $\Delta < 0 \Rightarrow P$ n'admet pas de racines réelles.
- On ne peut pas factoriser P dans \mathbb{R} .

Exemple 1

Étape 3: Ensemble solution

Objectif : Revenu ≥ 2800 \$

Domaine: $x \in [0, 25]$

 \Leftrightarrow Résoudre : $-12x^2 + 240x - 1300 \ge 0$

 \Leftrightarrow Résoudre : $-12\left(\left(x-10\right)^2 + \frac{100}{12}\right) \ge 0$

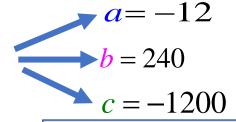
$$-12x^{2} + 240x - 1300 = -12\left(\left(x - 10\right)^{2} + \frac{100}{12}\right) < 0, \quad \forall x \in \mathbb{R}$$

- Aucun nombre d'augmentations de 3 \$ du prix initial ne peut garantir un revenu de 2800 \$ ou plus.
- Aucun prix du billet, dû à des augmentations de 3 \$ du prix initial, ne peut garantir un revenu de 2800 \$ ou plus.

Exemple 2 Objectif: Revenu > 2700 \$

Domaine: $x \in [0, 25]$

$$(15+3x)(100-4x) > 2700 \Leftrightarrow -12x^2 + 240x - 1200 > 0$$



Étape 1 Résoudre l'équation
$$-12x^2 + 240x - 1200 = 0$$

$$\Delta = b^2 - 4ac = 0$$

■ Si
$$\Delta = 0 \Rightarrow P$$
 admet une racine double $r_o = -\frac{b}{2a}$.
■ $P = a(x - r_o)^2$

Rappel Factorisation $P = ax^2 + bx + c$, $a \ne 0$

Le polynôme
$$-12x^2 + 240x - 1200$$
 admet la racine double $r_o = -\frac{b}{2a} = 10$

Étape 2 : Signe du polynôme

$$-12x^2 + 240x - 1200 = -12(x - 10)^2 \le 0, \ \forall x \in \mathbb{R}$$

Exemple 3 Objectif: Revenu > 2700 \$

Domaine: $x \in [0, 25]$

Étape 3 Ensemble solution

Revenu > 2700 \$
$$\Leftrightarrow$$
 Résoudre : $-12(x-10)^2 > 0$

Domaine: $x \in [0, 25]$

Or:
$$-12(x-10)^2 \le 0$$
, $\forall x \in \mathbb{R}$

$$\Rightarrow$$
 $S = \emptyset$

- Aucune augmentation de 3 \$ du prix initial ne peut garantir un revenu supérieur à 2700 \$,
- Aucun prix du billet, dû à des augmentations de 3 \$ du prix initial, ne peut garantir un revenu supérieur à 2700 \$

Exemple 4 Objectif: Revenu $\geq 2700 \,\$$

Domaine: $x \in [0, 25]$

Étape 3 Ensemble solution

Revenu
$$\geq$$
 2700 \$ \Leftrightarrow Résoudre : $-12(x-10)^2 \geq 0$

Domaine: $x \in [0, 25]$

Or:
$$-12(x-10)^2 \le 0$$
, $\forall x \in \mathbb{R}$

$$10 \in [0, 25] \Rightarrow S = \{10\}$$

- Il faudra 10 augmentations pour assurer un revenu de 2700 \$
- Prix du billet = 15 + 3(10) = 45\$

Exemple 5 Objectif: Revenu ≥ 2400 \$

Domaine: $x \in [0, 25]$

Revenu
$$\geq 2400 \, \$ \iff -12x^2 + 240x - 900 \geq 0$$

Étape 1: **Résoudre l'équation**
$$-12x^2 + 240x - 900 = 0$$

$$\Delta = b^2 - 4ac = 14400 > 0$$

$$x_1 = 5$$

$$x_2 = 15$$

$$-12x^2 + 240x - 900 = -12(x-5)(x-15)$$

$$a = -12$$

$$b = 240$$

$$c = -900$$

Rappel Factorisation $P = ax^2 + bx + c$, $a \ne 0$

• Si $\Delta > 0 \Rightarrow P$ admet deux racines distinctes x_1 et x_2 .

$$P = a(x - x_1)(x - x_2)$$

Exemple 5 Objectif: Revenu
$$\geq 2400 \, \Leftrightarrow -12(x-5)(x-15) \geq 0$$

Domaine: $x \in [0, 25]$

Étape 2	·Signa	du nol	vnôma
<u>Liape Z</u>	. Jigile	uu poi	ynome

$$P = -12(x-5)(x-15)$$

\mathcal{X}	$-\infty$		5		15		∞
x-5		_	0	+		+	
x-15		_			0	+	
(x-5)(x-15)		+	0	_	0	+	
-12(x-5)(x-15)			0	+	0	_	

$$(x-5)(x-15) \ge 0 \Rightarrow S = [5,15]$$

Racines du polynôme

$$x-5 < 0 \Leftrightarrow x < 5 \text{ et } x-5 > 0 \Leftrightarrow x > 5$$

$$x-15 < 0 \Leftrightarrow x < 15$$
 et $x-15 > 0 \Leftrightarrow x > 15$

Règle des signes
$$(+)\times(+)\rightarrow(+)$$
 $(-)\times(-)\rightarrow(+)$ $(+)\times(-)\rightarrow(-)$ $(-)\times(+)\rightarrow(-)$

Exemple 5

Objectif : Revenu
$$\geq 2400 \, \$ \quad \Leftrightarrow -12(x-5)(x-15) \geq 0$$

 $\Leftrightarrow -12(x-5)(x-15) \geq 0$

$$\begin{cases}
-12(x-5)(x-15) \ge 0 \Leftrightarrow x \in [5,15] \\
x \in \mathbb{N} \\
Domaine: x \in [0,25]
\end{cases}$$

$$\Rightarrow x \in S_{contexte} = \{5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15\}$$

$$Prix = 15 + 3x \in \{30, 33, 36, 39, \dots, 57, 60\}$$

Exemple 6

Objectif : Revenu > 2400 \$
$$\Leftrightarrow -12(x-5)(x-15) > 0$$

Domaine : $x \in [0,25]$

Étape 3: Ensemble solution

$$\begin{cases} -12(x-5)(x-15) > 0 \Leftrightarrow x \in]5,15[\\ x \in \mathbb{N} \end{cases}$$

$$Domaine: x \in [0,25]$$

$$x \in \mathbb{N}$$

$$\Rightarrow$$
 $x \in S_{contexte} = \{6, 7, 8, 9, 10, 11, 12, 13, 14\}$

$$Prix = 15 + 3x \in \{33, 36, 39, ..., 57\}$$

Aide mémoire

Soit le polynôme de degré 2 :
$$P = ax^2 + bx + c$$
, où $a, b, c \in \mathbb{R}$ et $a \neq 0$

Pour résoudre une inéquation quadratique : $P \le 0$, P < 0, $P \ge 0$ ou P > 0

Étape 1: Calcul du discriminant
$$\Delta = b^2 - 4ac$$

Étape 2 : Étude du signe de *P*

- Si $\Delta \le 0$, alors P est de même signe que a $Si \ a < 0 \Rightarrow P \le 0$ $Si \ a > 0 \Rightarrow P \ge 0$
- Si $\Delta > 0$, alors l'équation admet deux solutions réelles : x_1 et x_2 (supposons que $x_1 < x_2$)

P est de même signe que a P est de signe contraire à a P est de même signe que a
$$X_1$$
 Si $a > 0 \Rightarrow P > 0$ Si $a > 0 \Rightarrow P > 0$ Si $a < 0 \Rightarrow P < 0$

Étape 3 : Décrire l'ensemble solution

Parabole: résolution d'une inéquation quadratique à une variable

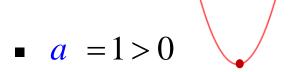
Soit le polynôme de degré 2 : $P = ax^2 + bx + c$, $a \ne 0$

Résoudre $P \le 0, P < 0, P \ge 0$ ou P > 0 Représenter la parabole $y = ax^2 + bx + c$

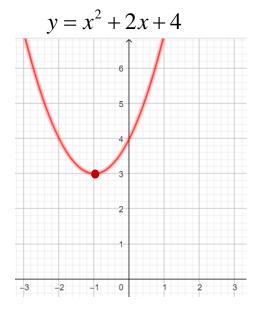
$$y = ax^2 + bx + a$$

Exemple 7 Résoudre l'inéquation $x^2 + 2x + 4 > 0$

- Le sommet de la parabole : $x_s = -\frac{b}{2a} = -\frac{2}{2} = -1$ et $y_s = (-1)^2 + 2(-1) + 4 = 3$
- $\Delta = b^2 4ac = 4 16 = -12 < 0 \Rightarrow$ la parabole ne coupe pas l'axe des x.



$$y = x^2 + 2x + 4 > 0, \ \forall x \in \mathbb{R}$$
$$x^2 + 2x + 4 > 0 \Rightarrow S = \mathbb{R}$$



Parabole : résolution d'une inéquation quadratique à une variable

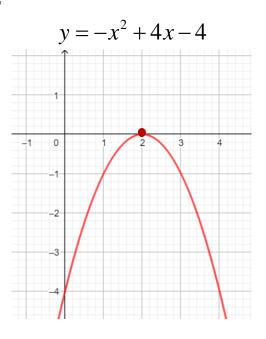
Exemple 8 Résoudre l'inéquation $-x^2 + 4x - 4 \ge 0$

- Le sommet de la parabole : $x_s = -\frac{b}{2a} = -\frac{4}{-2} = 2$ et $y_s = -(2)^2 + 4(2) 4 = 0$
- $\Delta = b^2 4ac = 16 16 = 0 \Rightarrow$ la parabole touche l'axe des x au sommet (2, 0).

$$a = -1 < 0$$

Signe du polynôme : $-x^2 + 4x - 4 \le 0$, $\forall x \in \mathbb{R}$

Résoudre : $-x^2 + 4x - 4 \ge 0 \Rightarrow S = \{2\}$



Parabole : résolution d'une inéquation quadratique à une variable

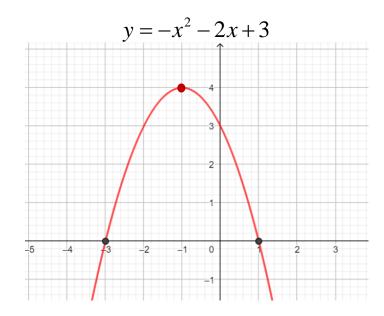
Exemple 9 Résoudre l'inéquation $-x^2 - 2x + 3 < 0$

■ Le sommet de la parabole :
$$x_s = -\frac{b}{2a} = -\frac{-2}{-2} = -1$$
 et $y_s = -(-1)^2 - 2(-1) + 3 = 4$

• $\Delta = b^2 - 4ac = 16 > 0 \Rightarrow$ la parabole coupe l'axe des x en deux points d'abscisses

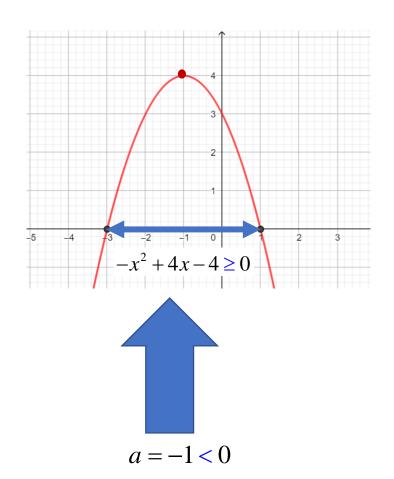
$$x_1 = \frac{-b - \sqrt{\Delta}}{2a} = 1 \text{ et } x_2 = \frac{-b + \sqrt{\Delta}}{2a} = -3$$

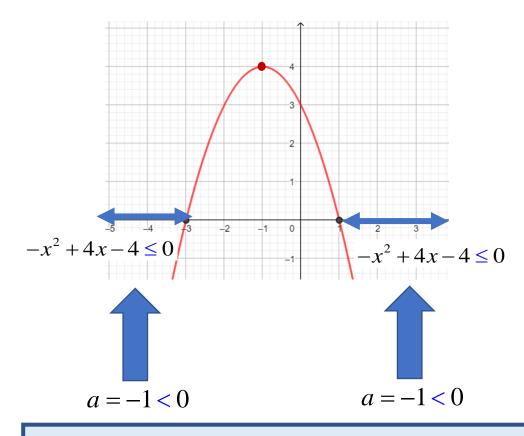
a = -1 < 0



Parabole : résolution d'une inéquation quadratique à une variable

Exemple 9 Résoudre l'inéquation $-x^2 - 2x + 3 < 0$





Résoudre:
$$-x^2 - 2x + 3 < 0 \Rightarrow S =]-\infty, -3[\cup]1, +\infty[$$

Résumé

Soit le polynôme de degré 2 : $P = ax^2 + bx + c$, où $a, b, c \in \mathbb{R}$ et $a \neq 0$

Pour résoudre une inéquation quadratique : $P \le 0$, P < 0, $P \ge 0$ ou P > 0

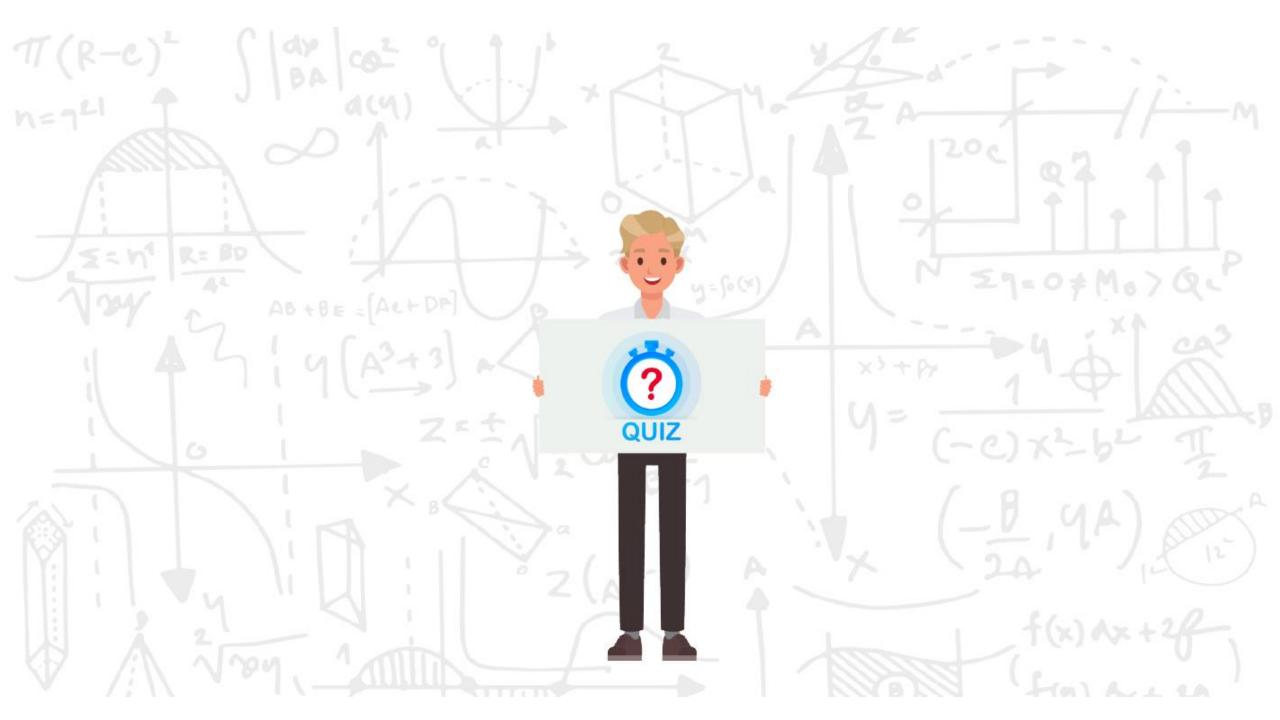
Étape 1: Calcul du discriminant $\Delta = b^2 - 4ac$

Étape 2 : Étude du signe de $P \iff$ Approche graphique ou bien

- Si $\Delta \le 0$, alors P est de même signe que a A = A = A Si $a < 0 \Rightarrow P \le 0$ Si $a > 0 \Rightarrow P \ge 0$
- Si $\Delta > 0$, alors l'équation admet deux solutions réelles : x_1 et x_2 (supposons que $x_1 < x_2$)

P est de même signe que a P est de signe contraire à a P est de même signe que a
$$Si \ a > 0 \Rightarrow P > 0$$
 $Si \ a > 0 \Rightarrow P > 0$ $Si \ a < 0 \Rightarrow P < 0$ $Si \ a < 0 \Rightarrow P < 0$ $Si \ a < 0 \Rightarrow P < 0$ $Si \ a < 0 \Rightarrow P < 0$

Étape 3 : Décrire l'ensemble solution



HEC MONTREAL

DÉPARTEMENT DE SCIENCES DE LA DÉCISION CENTRE D'AIDE EN MATHÉMATIQUES ET STATISTIQUE 2020

Direction de l'apprentissage et de l'innovation pédagogique Service de l'audiovisuel