HEC MONTREAL

DÉPARTEMENT DE SCIENCES DE LA DÉCISION FATIHA KACHER – Maître d'enseignement CENTRE D'AIDE EN MATHÉMATIQUES ET STATISTIQUE

MICHEL KEOULA - Coordonnateur

FONCTIONS RATIONNELLES ET ALGÉBRIQUES

Fonctions rationnelles

Fonctions algébriques

Fonction rationnelle: $f(x) = \frac{P(x)}{Q(x)}$, où P(x) et Q(x) sont des fonctions polynomiales.

$$Dom(f) = \mathbb{R} \setminus \left\{ x \in \mathbb{R} \mid Q(x) = 0 \right\}$$

Zéros: Résoudre l'équation P(x) = 0, où $x \in Dom(f)$

Rappel La fraction $\frac{P}{Q}$ est définie si $Q \neq 0$

Rappel La fraction $\frac{P}{Q} = 0$ si et seulement si P = 0

Exemple 1 Trouvez le domaine et les zéros de $f(x) = \frac{x^2 - 1}{x - 1}$

$$f(x) = \frac{x^2 - 1}{x - 1}$$

 $Dom(f) = \{x \in \mathbb{R} \mid x - 1 \neq 0\} = \mathbb{R} \setminus \{1\}$

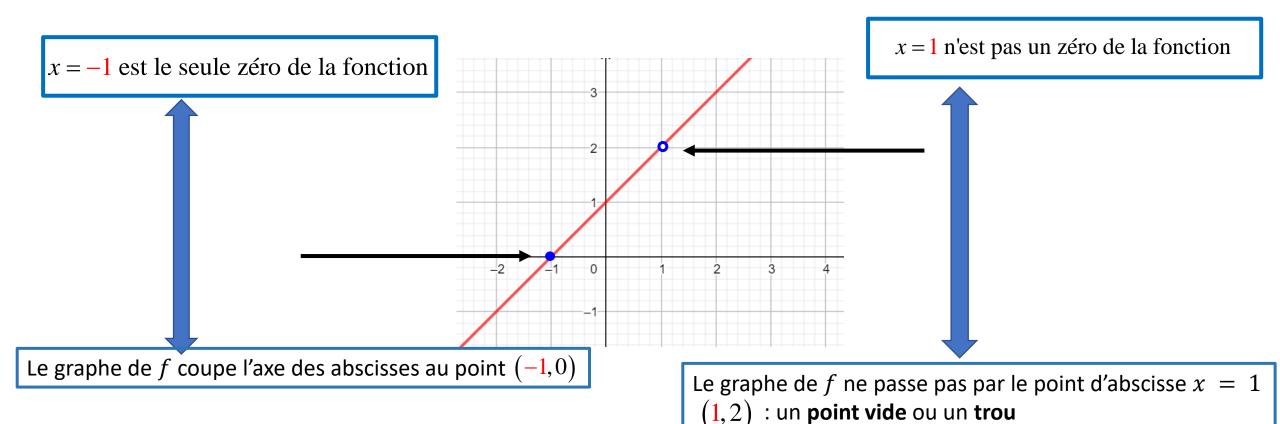
La fraction $\frac{P}{Q}$ est définie si $Q \neq 0$

Zéros de
$$f: \frac{x^2-1}{x-1} = 0 \iff x^2-1 = 0$$

La fraction $\frac{P}{Q} = 0$ si et seulement si P = 0

$$\Leftrightarrow (x-1)(x+1) = 0$$

$$x = 1 \notin Dom(f)$$


À vérifier souvent

x = -1 est le seul zéro de la fonction

x = 1 n'est pas un zéro de la fonction

Exemple 1 Trouvez le domaine et les zéros de
$$f(x) = \frac{x^2 - 1}{x - 1}$$
 $Dom(f) = \mathbb{R} \setminus \{1\}$

$$Dom(f) = \mathbb{R} \setminus \{1\}$$

Exemple 2 Trouvez le domaine et les zéros de $f(x) = \frac{x^2 - 1}{x^2 + 1}$

$$\int x^2 + 1$$

$$\int x^2 + 1$$

$$\int x^2 + 1$$

$$\int x^2 + 1$$

$$\int x^2 + 1 = 0$$

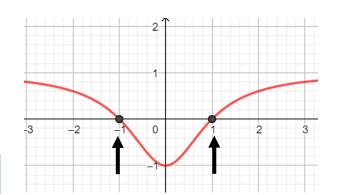
$$\int x^2 + 1 =$$

$$Dom(f) = \left\{ x \in \mathbb{R} \mid x^2 + 1 \neq 0 \right\} = \mathbb{R}$$

Zéros de
$$f: \frac{x^2 - 1}{x^2 + 1} = 0 \iff x^2 - 1 = 0$$

$$\Leftrightarrow x = \pm 1 \in Dom(f)$$

La fraction $\frac{P}{Q}$ est définie si $Q \neq 0$


La fraction $\frac{P}{}=0$ si et seulement si P=0

À vérifier souvent

 $x = \pm 1$ sont les deux zéros de la fonction

Le graphe de f coupe l'axe des x en (-1,0) et (1,0)

$$f(x) = \sqrt{1 - 2x}$$

$$g(x) = \sqrt[4]{x^2 - 1}$$

$$h(x) = \sqrt[3]{x^2 - 1}$$

$$f(x) = \sqrt{1-2x}$$
 $g(x) = \sqrt[4]{x^2 - 1}$ $h(x) = \sqrt[3]{x^2 - 1}$ $k(x) = \frac{x+1}{\sqrt{x^2 - 1}}$...

Exemples de fonctions algébriques

Modèle 1 : Polynôme

Domaine: \mathbb{R} (si pas de contexte)

Zéros: Résoudre f(x) = 0

Modèle 2 : Fraction rationnelle **P**

Domaine: $Q \neq 0$

• Zéros: $\frac{P}{Q} = 0 \Leftrightarrow P = 0$

Modèle 3: Racine carrée (racine n-ème avec n pair) \sqrt{P} , $\sqrt[4]{P}$, $\sqrt[6]{P}$,...

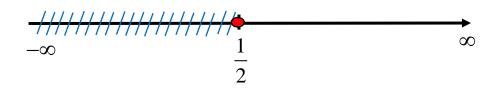
Domaine: $P \ge 0$

• Zéros: $\sqrt[n]{P} = 0 \Leftrightarrow P = 0$

Modèle 4: Racine cubique (racine n-ème avec n impair): $\sqrt[3]{P}$, $\sqrt[5]{P}$, $\sqrt[7]{P}$,...

Domaine : $\mathbb R$

• Zéros: $\sqrt[n]{P} = 0 \Leftrightarrow P = 0$


Exemple 1 Trouvez le domaine et les zéros de $f(x) = \sqrt{1-2x}$

$$Dom(f) = \{x \in \mathbb{R} \mid 1 - 2x \ge 0\}$$

Résoudre : $1-2x \ge 0$

$$1-2x \ge 0 \Leftrightarrow -2x \ge -1$$

$$\Leftrightarrow x \leq \frac{1}{2}$$

Modèle 3 : Racine carrée \sqrt{P}

• Domaine: $P \ge 0$

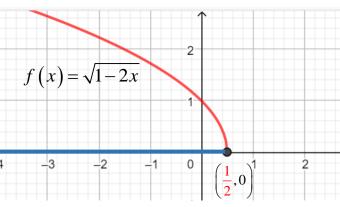
• **Zéros**: $\sqrt{P} = 0 \Leftrightarrow P = 0$

$$Dom(f) = \left[-\infty, \frac{1}{2}\right]$$

Exemple 1 Trouvez le domaine et les s zéros de $f(x) = \sqrt{1-2x}$

$$Dom(f) = \left] -\infty, \frac{1}{2} \right]$$

Zéros de f: Résoudre $\sqrt{1-2x} = 0 \Leftrightarrow 1-2x = 0$

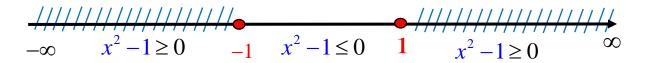

$$\Leftrightarrow x = \frac{1}{2} \in Dom(f)$$

$$x = \frac{1}{2}$$
 est le seul zéro de la fonction

Modèle 3 : Racine carrée \sqrt{P}

• Domaine: $P \ge 0$

Zéros: $\sqrt{P} = 0 \Leftrightarrow P = 0$

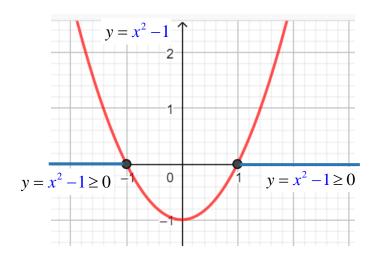


Exemple 2 Trouvez le domaine et les zéros de $g(x) = \sqrt[4]{x^2 - 1}$

$$Dom(g) = \left\{ x \in \mathbb{R} \left| x^2 - 1 \ge 0 \right\} \right\}$$

Résoudre : $x^2 - 1 \ge 0$ \longrightarrow a = 1 > 0

$$x^2 - 1 \ge 0 \Leftrightarrow (x - 1)(x + 1) \ge 0$$


$$Dom(g) =]-\infty, -1] \cup [1, +\infty[$$

Modèle 3: Racine $4^{\text{ème}}$

• Domaine: $P \ge 0$

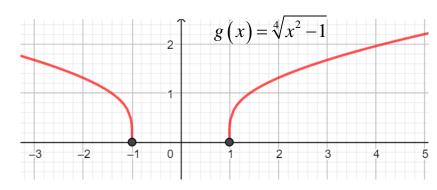
• Zéros: $\sqrt[4]{P} = 0 \Leftrightarrow P = 0$

Capsule _Inéquations quadratiques

Exemple 2 Trouvez le domaine et les zéros de $g(x) = \sqrt[4]{x^2 - 1}$

$$Dom(g) =]-\infty, -1] \cup [1, +\infty[$$

Zéros de g: Résoudre $\sqrt[4]{x^2 - 1} = 0 \Leftrightarrow x^2 - 1 = 0$


$$\Leftrightarrow x = \pm 1 \in Dom(g)$$

 $x = \pm 1$ sont les zéros de la fonction.

Modèle 3: Racine $4^{\text{ème}}$

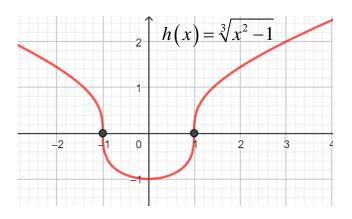
• Domaine: $P \ge 0$

• **Zéros**: $\sqrt[4]{P} = 0 \Leftrightarrow P = 0$

Exemple 3 Trouvez le domaine et les zéros de $h(x) = \sqrt[3]{x^2 - 1}$

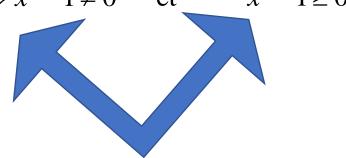
$$Dom(h) = \mathbb{R}$$

Zéros de h: Résoudre $\sqrt[3]{x^2 - 1} = 0 \Leftrightarrow x^2 - 1 = 0$

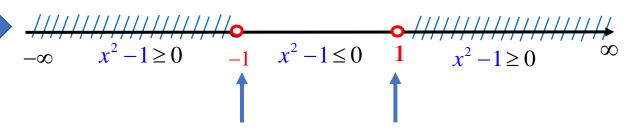

$$\Leftrightarrow x = \pm 1 \in Dom(h)$$

 $x = \pm 1$ sont les zéros de la fonction.

Modèle 4 : Racine cubique $\sqrt[3]{P}$


ullet Domaine : ${\mathbb R}$

• **Zéros**: $\sqrt[3]{P} = 0 \Leftrightarrow P = 0$


Exercice 4 Trouver le domaine et les zéros de $k(x) = \frac{x+1}{\sqrt{x^2-1}}$

$$Dom(k) : \sqrt{x^2 - 1} \neq 0 \iff x^2 - 1 \neq 0 \quad \text{et} \quad x^2 - 1 \geq 0$$

$$x^2 - 1 > 0$$

Voir exemple 8

$$Dom(h) =]-\infty, -1[\cup]1, +\infty[$$

Modèle 2: Fraction rationnelle $\frac{P}{Q}$

• Domaine: $Q \neq 0$

• Zéros: $\frac{P}{Q} = 0 \Leftrightarrow P = 0$

Modèle 3 : Racine carrée \sqrt{P}

• Domaine: $P \ge 0$

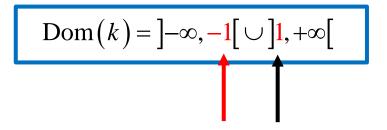
• Zéros: $\sqrt{P} = 0 \Leftrightarrow P = 0$

Exercice 4 Trouver le domaine et les zéros de $k(x) = \frac{x+1}{\sqrt{x^2-1}}$

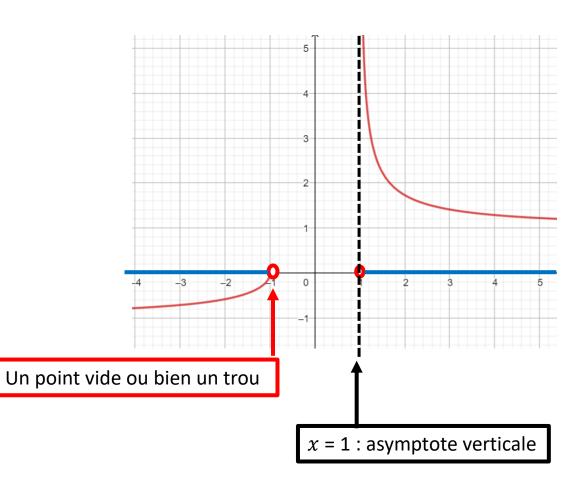
$$Dom(k) =]-\infty, -1[\cup]1, +\infty[$$

Zéros de k: Résoudre $x+1=0 \Leftrightarrow x=-1 \notin Dom(k)$

x = -1 n'est pas un zéro de la fonction.



• Domaine: $Q \neq 0$


• Zéros: $\frac{P}{Q} = 0 \Leftrightarrow P = 0$

Le graphe de f coupe ne coupe pas l'axe des x en (-1,0)

Exercice 4 Trouver le domaine et les zéros de $k(x) = \frac{x+1}{\sqrt{x^2-1}}$

Zéros de k: x = -1 n'est pas un zéro de la fonction.

Résumé

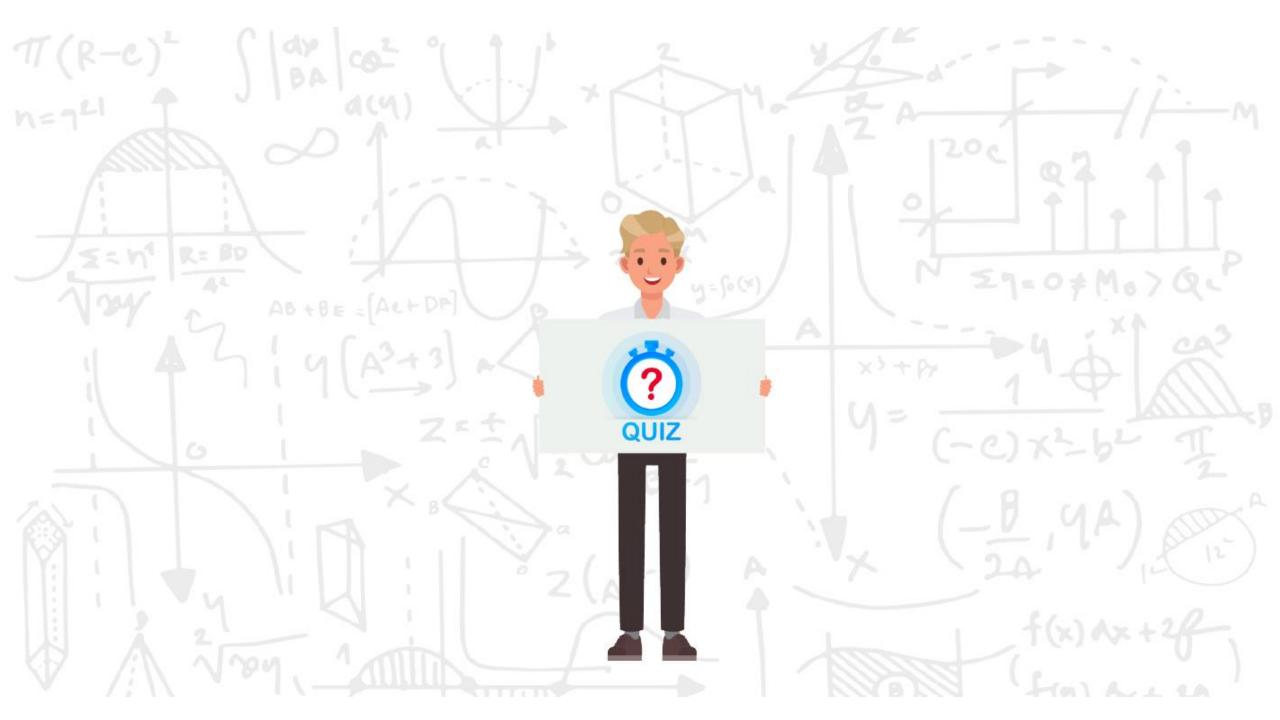
Modèle 1 :Fonction polynômiale:
$$f(x) = a_n x^n + a_{n-1} x^{n-1} + a_{n-2} x^{n-2} + ... + a_1 x + a_0$$
, $a_n \neq 0$

- Domaine : \mathbb{R}
- **Zéros**: Résoudre f(x) = 0

Modèle 2: Fraction rationnelle $\frac{P}{Q}$

- Domaine : $Q \neq 0$
- Zéros: $\frac{P}{Q} = 0 \Leftrightarrow P = 0$

Modèle 3: Racine carrée (racine n-ème avec n pair) \sqrt{P} , $\sqrt[4]{P}$, $\sqrt[6]{P}$,...


- Domaine: $P \ge 0$
- Zéros: $\sqrt[n]{P} = 0 \Leftrightarrow P = 0$

Modèle 4: Racine cubique (racine n-ème avec n impair) $\sqrt[3]{P}$, $\sqrt[5]{P}$,...

- Domaine : \mathbb{R}
- **Zéros**: $\sqrt[n]{P} = 0 \Leftrightarrow P = 0$

RÉFÉRENCES

- Michèle Gingras, Mathématique d'appoint, 5e édition, 2015, Éditeur Chenelière éducation.
- Josée Hamel, Mise à niveau Mathématique, 2e édition, 2017, Éditeur Pearson (ERPI)

