PLOTTING THE GRAPH OF A FUNCTION

Summary

L. Methodology: how to plot a graph of a function......1

By combining the concepts of the first and second derivatives, it is now possible to plot the graph of a function with staggering precision: the first derivative represents the slope of a function and allows us to determine its rate of change; the stationary and critical points allow us to obtain local (or absolute) minima and maxima; the second derivative describes the curvature of the function.

It is crucial to not confuse the characteristics unveiled by the functions f, f', f''.

```
f(x) \rightarrow \text{value} (height) of the function at point x (positive, negative) f'(x) \rightarrow \text{slope} of the function at point x (increasing, decreasing) f''^{(x)} \rightarrow \text{curvature} of the function at point x (concave, convex)
```

We suggest the following methodology in order to plot the graph of a function.

1. Methodology: how to plot a graph of a function

- Calculate the first derivative;
- Find all stationary and critical points;
- Calculate the second derivative ;
- Find all points where the second derivative is zero;
- Create a table of variation by identifying:
- 1. The value of the function at the stationary and critical points and the points where the second derivative is zero (inflection points);
- 2. All intervals between and around the points mentioned in 1;
- 3. Whether the function is increasing/decreasing between the stationary and critical points;
- 4. The concavity/convexity between the points where the second derivative is zero or does not exist;
- 5. The local minima and maxima.

• Use the table to plot the graph.

We will use two examples from the previous sections to illustrate the process:

Example 1

Plot the graph of the function $f(x) = 2x^3 - 3x^2 - 12x + 4$.

1. Calculate the first derivative of f(x);

$$f'(x) = 6x^2 - 6x - 12$$

= 6(x^2 - x - 2)

2. Find all stationary and critical points;

We obtain a stationary point when f'(x) = 0.

$$6(x^{2} - x - 2) = 0$$

$$x^{2} - x - 2 = 0$$

$$(x+1)(x-2) = 0 \Rightarrow x = \{-1, 2\}$$

There are thus two stationary points ($x = \{-1, 2\}$). There is however no critical point since the derivative is well defined for all x.

3. Calculate the second derivative of the function f(x);

$$f''(x) = (6x^2 - 6x - 12)'$$

= 12x - 6

4. Find all points where the second derivative is zero or does not exist;

The second derivative is zero when

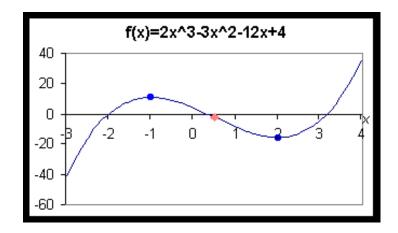
$$12x - 6 = 0$$
$$12x = 6 \implies x = \frac{1}{2}$$

Create a table of variations by identifying:

- 1. The value of the function at the stationary and critical points and the points where the second derivative cancels itself out or does not exist;
- 2. All intervals between and around the points mentioned in 1;

- 3. Whether the function is increasing/decreasing between the stationary and critical points
- 4. The concavity/convexity between the points where the second derivative is zero or does not exist
- 5. The local minima and maxima.

x] - ∞ , -1[-1]-1, 1/2[1/2]1/2,2[2] 2,∞[
f(x)		11		- 2,5		-16	
f'(x)	+	0	-	-	-	0	+
f "(x)	-	-	-	0	+	+	+
↓or↑ ∪or∩	↑	stat.pt. ∩ Max	↑ 1	↓ change of curvature	↓ U	stat.pt. U Min	↑ U



Example

Find all local optima of the function $f(x) = x^{1/3} \cdot (x+1)$

1. Calculate the first derivative of f(x);

$$f'(x) = \left(x^{1/3}\right)' \cdot (x+1) + x^{1/3} \cdot (x+1)' \qquad (product \, rule)$$

$$= \frac{1}{3}x^{-2/3} \cdot (x+1) + x^{1/3} \cdot 1$$

$$= \frac{x+1}{3x^{2/3}} + x^{1/3}$$

$$= \frac{x+1}{3x^{2/3}} + \frac{x^{1/3} \cdot 3x^{2/3}}{3x^{2/3}}$$

$$= \frac{x+1+3x}{3x^{2/3}}$$

$$= \frac{1+4x}{3x^{2/3}}$$

$$= \frac{1+4x}{3x^{2/3}}$$

2. Find all stationary and critical points;

We obtain a stationary point when f'(x) = 0.

This is obtained when the numerator is zero : 1 + 4x = 0.

Therefore, x = -1/4 = -0.25 is a stationary point.

A critical point is obtained when f'(x) is not defined. Since the denominator is zero when x = 0, this is a critical point.

3. Calculate the second derivative;

$$f'(x) = \frac{(1+4x)' \cdot (3x^{2/3}) - (1+4x) \cdot (3x^{2/3})'}{(3x^{2/3})^2}$$
 quotient rule

$$= \frac{4 \cdot 3x^{2/3} - (1+4x) \cdot 2x^{-1/3}}{9x^{4/3}}$$

$$= \frac{1}{9x^{4/3}} \cdot \left(12x^{2/3} - \frac{2 \cdot (1+4x)}{x^{1/3}}\right)$$

$$= \frac{1}{9x^{4/3}} \cdot \left(\frac{x^{1/3} \cdot 12x^{2/3}}{x^{1/3}} - \frac{2 \cdot (1+4x)}{x^{1/3}}\right) \qquad (common denominator)$$

$$= \frac{1}{9x^{4/3}} \cdot \left(\frac{12x - (2+8x)}{x^{1/3}}\right)$$

$$= \frac{4x - 2}{9x^{5/3}}$$

4. Find all points where the second derivative is zero or does not exist;

The derivative is zero when the denominator is zero:

$$4x - 2 = 0 \rightarrow x = 1/2$$

The second derivative does not exist when the denominator is zero

$$9x^{5/3} = 0 \rightarrow x = 0$$

This point had already been identified as a critical point. Beware, the sign of the second derivative will change at that point since the exponents are odd.

Create a table of variations by identifying:

- 1. The value of the function at the stationary and critical points and the points where the second derivative is zero or does not exist;
- 2. All intervals between and around the points mentioned in 1;
- 3. Whether the function is increasing/decreasing between the stationary and critical points
- 4. The concavity/convexity between the points where the second derivative is zero or does not exist

The local minima and maxima.

x	x?? 1/4	? 1/4]2 1/4 ,0[0]0,1/2[1/2] 1/2,∞[
f(x)		- 0,4725		0		1,1906	
f '(x)	-	0	+	Not defined	+	0	+
f "(x)	+	+	+	Not defined	-	0	+
↓ or ↑	1	Stat pt.	↑	↑	↑	↑	↑
∪ or ∩	U	U	U	changes	Λ	changes	U
		Min		curvature		curvature	

